973 resultados para Nitrogen plasma
Resumo:
Carbon nanostructures (CNs) are amongst the most promising biorecognition nanomaterials due to their unprecedented optical, electrical and structural properties. As such, CNs may be harnessed to tackle the detrimental public health and socio-economic adversities associated with neurodegenerative diseases (NDs). In particular, CNs may be tailored for a specific determination of biomarkers indicative of NDs. However, the realization of such a biosensor represents a significant technological challenge in the uniform fabrication of CNs with outstanding qualities in order to facilitate a highly-sensitive detection of biomarkers suspended in complex biological environments. Notably, the versatility of plasma-based techniques for the synthesis and surface modification of CNs may be embraced to optimize the biorecognition performance and capabilities. This review surveys the recent advances in CN-based biosensors, and highlights the benefits of plasma-processing techniques to enable, enhance, and tailor the performance and optimize the fabrication of CNs, towards the construction of biosensors with unparalleled performance for the early diagnosis of NDs, via a plethora of energy-efficient, environmentally-benign, and inexpensive approaches.
Resumo:
Transfusion of blood components has been associated with poor patient outcomes and, an overall increase in morbidity and mortality. Differences in the blood components arising from donor health, age and immune status may impact on outcomes of transfusion and transfusion-related immune modulation in recipients. The aim of this study was to investigate differences in inflammatory profile in donors and association with parameters including age, gender and deficiency status of pattern recognition molecule mannose-binding lectin (MBL). MBL level was determined by ELISA. Serum levels of interleukin (IL)-1α, IL-1β, IL-6, IL-8, IL-10, IL-12, tumour necrosis factor (TNF)-α, macrophage inflammatory protein (MIP)-1α, monocyte chemoattractant protein (MCP)-1, interferon (IFN)-α, and IFN-γ were examined by cytometric bead array (CBA). C-reactive protein (CRP) and rheumatoid factor (RF) were examined by immunoturbidimetry. This study demonstrated age was a parameter associated with the immune profile of blood donors, with significant increases in MCP-1 (p < 0.05) and RF (p < 0.05) and decreases in IL-1α evident in the older donors (61–76 years). Significant gender-associated differences in MCP-1, IL-12 and CRP plasma levels in the blood donor cohort were also reported. There was no significant difference in the level of any inflammatory markers studied according to MBL status. This study demonstrated that age and gender are associated with inflammatory profile in donors. These differences may be a factor impacting on outcomes of transfusion.
Resumo:
Simple, rapid, plasma-assisted synthesis of large-area arrays of vertically-aligned carbon nanowalls on highly-porous, transparent bare and gold-coated alumina membranes with the two pore sizes is reported. It is demonstrated that the complex patterns of vertically aligned nanowalls can nucleate and form different morphologies in the low-temperature plasmas. The process is stable, and the twofold change in the gas flow (10 and 20 sccm) does not noticeably influence the morphology of the nanowall pattern. Application of a thin (5 nm) gold layer to nanoporous membrane prior to the nanowall growth allows controlling the network morphology.
Resumo:
The production mechanism of OH radicals in a pulsed DC plasma jet is studied by a two-dimensional (2-D) plasma jet model and a one-dimensional (1-D) discharge model. For the plasma jet in the open air, electron-impact dissociation of H2O, electron neutralization of H2O+, as well as dissociation of H2O by O(1D) are found to be the main reactions to generate the OH species. The contribution of the dissociation of H2O by electron is more than the others. The additions of N2, O2, air, and H2O into the working gas increase the OH density outside the tube slightly, which is attributed to more electrons produced by Penning ionization. On the other hand, the additions of O2 and H2O into the working gas increase the OH density inside the tube substantially, which is attributed to the increased O (1D) and H2O concentration, respectively. The gas flow will transport high density OH out of the tube during pulse off period. It is also shown that the plasma chemistry and reactivity can be effectively controlled by the pulse numbers. These results are supported by the laser induced fluorescence measurements and are relevant to several applications of atmospheric-pressure plasmas in health care, medicine, and materials processing.
Resumo:
Graphene films were produced by chemical vapor deposition (CVD) of pyridine on copper substrates. Pyridine-CVD is expected to lead to doped graphene by the insertion of nitrogen atoms in the growing sp2 carbon lattice, possibly improving the properties of graphene as a transparent conductive film. We here report on the influence that the CVD parameters (i.e., temperature and gas flow) have on the morphology, transmittance, and electrical conductivity of the graphene films grown with pyridine. A temperature range between 930 and 1070 °C was explored and the results were compared to those of pristine graphene grown by ethanol-CVD under the same process conditions. The films were characterized by atomic force microscopy, Raman and X-ray photoemission spectroscopy. The optical transmittance and electrical conductivity of the films were measured to evaluate their performance as transparent conductive electrodes. Graphene films grown by pyridine reached an electrical conductivity of 14.3 × 105 S/m. Such a high conductivity seems to be associated with the electronic doping induced by substitutional nitrogen atoms. In particular, at 930 °C the nitrogen/carbon ratio of pyridine-grown graphene reaches 3%, and its electrical conductivity is 40% higher than that of pristine graphene grown from ethanol-CVD.
Resumo:
Wet-milling protocol was employed to produce pressed powder tablets with excellent cohesion and homogeneity suitable for laser ablation (LA) analysis of volatile and refractive elements in sediment. The influence of sample preparation on analytical performance was also investigated, including sample homogeneity, accuracy and limit of detection. Milling in volatile solvent for 40 min ensured sample is well mixed and could reasonably recover both volatile (Hg) and refractive (Zr) elements. With the exception of Cr (−52%) and Nb (+26%) major, minor and trace elements in STSD-1 and MESS-3 could be analysed within ±20% of the certified values. Comparison of the method with total digestion method using HF was tested by analysing 10 different sediment samples. The laser method recovers significantly higher amounts of analytes such as Ag, Cd, Sn and Sn than the total digestion method making it a more robust method for elements across the periodic table. LA-ICP-MS also eliminates the interferences from chemical reagents as well as the health and safety risks associated with digestion processes. Therefore, it can be considered as an enhanced method for the analysis of heterogeneous matrices such as river sediments.
Resumo:
Commercially available mullite (3Al(2)O(3). 2SiO(2)) powders containing oxides of calcium and iron as impurities, have been made suitable for plasma spraying by using an organic binder. Stainless steel substrates covered with Ni-22Cr-10Al-1.0Y bond coat were spray coated with mullite, The 425 mu m thick coatings were subjected to thermal shock cycling under burner rig conditions between 1000 and 1200 degrees C and less than 200 degrees C with holding times of 1, 5, and 30 min. While the coatings withstood as high as 1000 shock cycles without failure between 1000 and 200 degrees C, spallation occurred early at 120 cycles when shocked from 1200 degrees C, The coatings appeared to go through a process of self erosion at high temperatures resulting in loss of material. Also observed were changes attributable to melting of the silicate grains, which smooth down the surface. Oxidation of the bond coat did not appear to influence the failure, These observations were supported by detailed scanning electron microscopy and quantitative chemical composition analysis, differential thermal analysis, and surface roughness measurements.
Resumo:
Electrochemical capacity retention of nearly X-ray amorphous nanostructured manganese oxide (nanoMnO2) synthesized by mixing directly KMnO4 with ethylene glycol under ambient conditions for supercapacitor studies is enhanced significantly. Although X-ray diffraction (XRD) pattern of nanoMnO2 shows poor crystallinity, it is found that by Mn K-edge X-ray absorption near edge structure (XANES) measurement that the nanoMnO2 obtained is locally arranged in a δ-MnO2-type layered structure composed of edge-shared network of MnO6 octahedra. Field emission scanning electron microscopy and XANES measurements show that nanoMnO2 contains nearly spherical shaped morphology with δ-MnO2 structure, and 1D nanorods of α-MnO2 type structure (powder XRD) in the annealed (600 °C) sample. Volumetric nitrogen adsorption−desorption isotherms, inductively coupled plasma analysis, and thermal analysis are carried out to obtain physicochemical properties such as surface area (230 m2 g−1), porosity of nanoMnO2 (secondary mesopores of diameter 14.5 nm), water content, composition, etc., which lead to the promising electrochemical properties as an electrode for supercapacitor. The nanoMnO2 shows a very high stability even after 1200 cycles with capacity retention of about 250 F g−1.
Resumo:
A method of ion extraction from plasmas is reported in which the interference of field lines due to the extraction system in the plasma region is avoided by proper shaping of the extractor electrode and is supported by field plots.
Resumo:
The bentiromide test was evaluated using plasma p-aminobenzoic acid as an indirect test of pancreatic insufficiency in young children between 2 months and 4 years of age. To determine the optimal test method, the following were examined: (a) the best dose of bentiromide (15 mg/kg or 30 mg/kg); (b) the optimal sampling time for plasma p-aminobenzoic acid, and; (c) the effect of coadministration of a liquid meal. Sixty-nine children (1.6 ± 1.0 years) were studied, including 34 controls with normal fat absorption and 35 patients (34 with cystic fibrosis) with fat maldigestion due to pancreatic insufficiency. Control and pancreatic insufficient subjects were studied in three age-matched groups: (a) low-dose bentiromide (15 mg/kg) with clear fluids; (b) high-dose bentiromide (30 mg/kg) with clear fluids, and; (c) high-dose bentiromide with a liquid meal. Plasma p-aminobenzoic acid was determined at 0, 30, 60, and 90 minutes then hourly for 6 hours. The dose effect of bentiromide with clear liquids was evaluated. High-dose bentiromide best discriminated control and pancreatic insufficient subjects, due to a higher peak plasma p-aminobenzoic acid level in controls, but poor sensitivity and specificity remained. High-dose bentiromide with a liquid meal produced a delayed increase in plasma p-aminobenzoic acid in the control subjects probably caused by retarded gastric emptying. However, in the pancreatic insufficient subjects, use of a liquid meal resulted in significantly lower plasma p-aminobenzoic acid levels at all time points; plasma p-aminobenzoic acid at 2 and 3 hours completely discriminated between control and pancreatic insufficient patients. Evaluation of the data by area under the time-concentration curve failed to improve test results. In conclusion, the bentiromide test is a simple, clinically useful means of detecting pancreatic insufficiency in young children, but a higher dose administered with a liquid meal is recommended.
Resumo:
Formative time lags in nitrogen, oxygen, and dry air are measured with and without a magnetic field over a range of gas pressures (0.05 ' p ' 20.2 torr 5 kPa to 2 MPa, electric field strengths (1.8xO14 EEs 60xlO V m l) and magnetic field strengths (85xl0-4 < B ' 16x10-2 Tesla). For experiments below the Paschen minimum, the electrodes are designed to ensure that breakdown occurs over longer gaps and for experiments above the Paschen minimum, a coaxial cylindrical system is employed. The experimental technique consists of applying pulse voltages to the gap at various constant values of E/p and B/p and measuring the time lags from which the formative time lags are separated. In the gases studed, formative time lags decrease on application of a magnetic field at a given pressure for conditions below the Paschen minimum. The voltages at which the formative time lags remain the same without and with magnetic fields are determined, and electron molecule collision frequencies (v/p) are determined using the Effective Reduced Electric Field [EREF] concept. With increasing ratio of E/p in crossed fields, v/p decreases in all the three gases. Measurements above the Paschen minimum yield formative time lags which increase on application of a magnetic field. Formative time lags in nitrogen in ExB fields are calculated assuming an average collision frequency of 8.5x109 sec-1 torr 1. It is concluded that the EREF concept can be applied to explain formative time lags in ExB fields.
Resumo:
Binuclear complexes of rhodium(I) of the type [(dien)(X)Rh(μ-N-N)Rh(X)(dien)] (dien = 1,5-cyclooctadiene or norbornadiene; N-N = pyrazine, 4,4′-bipyridine or Phenazine and X = Cl or Br) with bridging heterocycles have been isolated and their reactions with carbon monoxide, 2,2′-bipyridine and 1,10-phenanthroline investigated. The crystal structure of [(COD)(Cl)Rh(μ-pyrazine)Rh(Cl)(COD)] has been determined.