955 resultados para Nitrogen Sorption Isotherm
Resumo:
The goal of this study was to evaluate the nitrogen fertilization as deep litter for pigs in order to produce biomass and accumulate nutrients by the corn. A deep litter made of rice husk as organic compound, from a commercial pig farm during finishing phase, was used. After three consecutive batches of pigs, the deep litter was subjected to a maturation period of 50 days, and samples of this material were taken for analysis of agronomic value. The experimental design was completely randomized with five replicates. The treatments consisted of doses of 0, 75, 150 and 300mg dm-3 of N of deep litter, as well as an additional treatment with ammonium sulfate, with a dosage of 150mg dm-3 of N. After 45 days, corn plants were harvested in order to evaluate the total dry weight and nutrient concentrations of their aerial parts. Dry matter increases were found with more application of deep litter. Regarding control fertilization, the use of increasing dosages of deep litter allowed accumulation of K, reduced the availability of P, Ca, Mg, Zn and B and did not alter the concentrations of N, Cu, Fe and Mn.
Resumo:
This work aimed to study the agronomic performance and capacity of nutrient removal by bermudagrass (Cynodon spp.) and cattail (Typha sp.) when grown in constructed wetlands systems (CWSs) of vertical and horizontal flow, respectively, used in the post-treatment of swine breeding wastewater (ARS). The average yield of dry matter (DM) of bermudagrass in sections of 60-day interval ranged from 14 to 43 t ha-1, while the cultivated cattail produced in a single cut after 200 days of cultivation between 45 and 67 t ha-1 of DM. Bermudagrass extracted up to 17.65 kg ha-1 d-1 of nitrogen, 1.76 kg ha-1 d-1 of phosphorus, 6.67 g ha-1 d-1 of copper and 54.75 g ha-1 d-1 of zinc. Cattail extracted up to 5.10 kg ha-1 d-1 of nitrogen, 1.07 kg ha-1 d-1 of phosphorus, 1.41 g ha-1 d-1 of copper and 16.04 g ha-1 d-1 of zinc. Cattail and bermudagrass were able to remove, respectively, 5.0 and 4.6% of the nitrogen and 11.2 and 5.4% of the phosphorus applied via ARS, being less efficient in extracting N and P when the initial intake of these nutrients is evaluated.
Resumo:
The aim of this study was to evaluate the efficiency of a sequencing batch reactor (SBR) on biological removal of nitrogen from cattle slaughterhouse wastewater by nitrification/denitrification processes. The effects of initial concentration of ammoniacal nitrogen were investigated at 100; 150 and 200 mg L-1 and air flow rate at 0.125; 0.375 and 0.625 L min¹ Lreactor-1 on the nitrogen compounds removal, by a Central Composite Rotational Design (CCRD) configuration. There were variations from 9.2 to 94.9%, 4.0 to 19.6% and 20.8 to 92.0% in the conversion of ammoniacal nitrogen to nitrate and nitrite concentration and removal of total nitrogen, respectively. The increase of air flow rate and decrease of the initial concentration of ammoniacal nitrogen resulted in higher efficiencies of total nitrogen removal, as well as the conversion of ammoniacal nitrogen to nitrate. During the pre-established intervals of this study, the removal and conversion efficiencies of nitrogen compounds above 85% were achieved in air flow rate variations from 0.375 to 0.725 L min-1 Lreactor-1 and initial concentration of ammoniacal nitrogen from 80 to 200 mg L-1. On denitrification process, we obtained efficiencies from 91.5 to 96.9% on the removal of nitrite/nitrate and from 78.3 to 87.9% on the removal of organic matter.
Resumo:
Sanitary landfill leachates present high concentrations of carbonaceous and nitrogenous materials. The crucial point is that carbonaceous materials are of difficult biodegradation, what compromises the performance of biological treatment processes, while nitrogenous materials, such as ammonia nitrogen, probably preclude the use of biological treatments. Therefore, the aim of this work was to study the desorption process of ammonia nitrogen from sanitary landfill leachate in filling towers. Desorption was carried out in filling towers of 35 L capacity. The leachate was collected from a sanitary landfill located in João Pessoa, Paraíba State, Brazil. Desorption efficiency for the pH values adopted in four treatments was 93% minimum and 95.5% maximum, with aeration mean time ranging from 3 to 6 hours. The limiting factors of ammonia nitrogen desorption from sanitary landfill leachates in filling towers are associated with the use of alkalizer species for pH correction, and electricity costs for aeration.
Resumo:
This study aims to evaluate the leaf concentration of nitrogen and phosphorus correlated to the production of photoassimilates in beans plants (Phaseolus vulgaris L.) under high [CO2] and drought stress. The experiment was conducted in Viçosa (Brazil), during the period from April to July 2009, by using open-top chambers equipped with CO2 injection system. The drought stress was applied, through the irrigation suspension, during the period from flowering to maturation. The experimental design was randomized blocks in split-plot scheme with four replication, where the plots with plants grown in [CO2] of 700 mg L-1 and [CO2] environment of 380 mg L-1 and the subplots with plants with and without drought stress. The results were submitted to ANOVA and Tukey test (p < 0.05). In the plants under high [CO2] with and without drought stress, the photosynthetic rate increased by 59%, while the dry matter presented an increment of 20% in the plants under high [CO2] without drought stress. Reductions in [N] and [P] occurred in plants grown under high [CO2], resulting in greater efficiency in nitrogen use for photosynthesis. The high [CO2] increase only the total dry matter and not the total mass of grains. The drought stress reduces the dry matter and mass of grain, even at high [CO2].
Resumo:
The objective of this study was to evaluate the productive performance of sunflower plants irrigated with different levels of domestic treated sewage and groundwater well with different doses of nitrogen. It was used randomized blocks design in split-split plots with four replications. In the plots, we evaluated the effect of two types of irrigation water, in the subplots we evaluated the five irrigation levels expressed as 25, 50, 75, 100 and 125% of the Class A pan Evaporation (CAE), and in the sub subplots, we evaluated the effect of four different doses of nitrogen (25, 50, 75 and 100 kg ha-1). The irrigation of sunflower with domestic sewage produced greater yield potential of grain and oil. The use of water from treated wastewater can replace up to 50 kg N ha-1 without affecting productivity. It is recommended for the commercial production of sunflower the use of treated sewage water with irrigation depth relative to 100% of CAE (296.64 mm) and nitrogen of 25 kg ha-1.
Resumo:
This study aimed to evaluate the influence of airflow (0.25, 0.50 and 0.75 L.L-1.min-1) and cycle time (10.45 h, 14.25 h and 17.35 h) on a sequencing batch reactor (SBR) performance in promoting nitrification and denitrification of poultry slaughterhouse wastewater. The operational stages included feeding, aerobic and anoxic reactions, sedimentation and discharge. SBR was operated in a laboratory scale with a working volume of 4 L, keeping 25% of biomass retained inside the reactor as inoculum for the next batch. In the anoxic stage, C: N ratio was maintained between 5 and 6 by adding cassava starch wastewater. A factorial design (22) with five repetitions was designed at the central point to evaluate the influence of cycle time and airflow on total inorganic nitrogen removal (N-NH4++N-NO2-+N-NO3-) and in the whole process (nitrification and denitrification). The highest total inorganic nitrogen removal (93.3%) was observed for airflow of 0.25 L.L-1.min‑1 and a cycle time of 14.25 h. At the end of the experiment, the sludge inside the reactor was characterized by fluorescent in situ hybridization (FISH), indicating the presence of ammonia and nitrite oxidizing bacteria.
Resumo:
Ett huvudmål med denna avhandling var att erhålla ny information om växelverkan mellan metalljoner i vattenfas och träbaserade material såsom olika pappersmassor, ved och bark. Material av gran, tall och björk har studerats. En ny känslig kolonnkromatografisk metod utvecklades för bestämning av affinitetsordningar för 17 olika metalljoner. Av dessa bands trevärt järn och de mycket toxiska tungmetallerna bly, koppar och kadmium starkast till de studerade materialen. Växelverkan i dessa tvåfas system sker som jonbyte, huvudsakligen via komplexbildning av metalljoner till funktionella grupper i den fasta fasen. Vattenfasens pH är den viktigaste parametern som bestämmer totala halten av metalljoner som binds till materialen. Resultatet i denna avhandling kan delvis betraktas som grundforskning. En ny kunskap om metalljoners förekomst och kemiska reaktioner i dessa system är även av stor ekonomisk och ekologisk, betydelse, när man strävar till allt mera slutna system i moderna massafabriker. Avhandlingen visar också att trädbark har stor potential för biosorption av tungmetaller t.ex. från avfallsvatten. Trädbark har nästan lika stor bindningskapacitet som dyra syntetiska jonbytare.
Resumo:
Computational fluid dynamics (CFD) modeling is an important tool in designing new combustion systems. By using CFD modeling, entire combustion systems can be modeled and the emissions and the performance can be predicted. CFD modeling can also be used to develop new and better combustion systems from an economical and environmental point of view. In CFD modeling of solid fuel combustion, the combustible fuel is generally treated as single fuel particles. One of the limitations with the CFD modeling concerns the sub-models describing the combustion of single fuel particles. Available models in the scientific literature are in many cases not suitable as submodels for CFD modeling since they depend on a large number of input parameters and are computationally heavy. In this thesis CFD-applicable models are developed for the combustion of single fuel particles. The single particle models can be used to improve the combustion performance in various combustion devices or develop completely new technologies. The investigated fields are oxidation of carbon (C) and nitrogen (N) in char residues from solid fuels. Modeled char-C oxidation rates are compared to experimental oxidation rates for a large number of pulverized solid fuel chars under relevant combustion conditions. The experiments have been performed in an isothermal plug flow reactor operating at 1123-1673 K and 3-15 vol.% O2. In the single particle model, the char oxidation is based on apparent kinetics and depends on three fuel specific parameters: apparent pre-exponential factor, apparent activation energy, and apparent reaction order. The single particle model can be incorporated as a sub-model into a CFD code. The results show that the modeled char oxidation rates are in good agreement with experimental char oxidation rates up to around 70% of burnout. Moreover, the results show that the activation energy and the reaction order can be assumed to be constant for a large number of bituminous coal chars under conditions limited by the combined effects of chemical kinetics and pore diffusion. Based on this, a new model based on only one fuel specific parameter is developed (Paper III). The results also show that reaction orders of bituminous coal chars and anthracite chars differ under similar conditions (Paper I and Paper II); reaction orders of bituminous coal chars were found to be one, while reaction orders of anthracite chars were determined to be zero. This difference in reaction orders has not previously been observed in the literature and should be considered in future char oxidation models. One of the most frequently used comprehensive char oxidation models could not explain the difference in the reaction orders. In the thesis (Paper II), a modification to the model is suggested in order to explain the difference in reaction orders between anthracite chars and bituminous coal chars. Two single particle models are also developed for the NO formation and reduction during the oxidation of single biomass char particles. In the models the char-N is assumed to be oxidized to NO and the NO is partly reduced inside the particle. The first model (Paper IV) is based on the concentration gradients of NO inside and outside the particle and the second model is simplified to such an extent that it is based on apparent kinetics and can be incorporated as a sub-model into a CFD code (Paper V). Modeled NO release rates from both models were in good agreement with experimental measurements from a single particle reactor of quartz glass operating at 1173-1323 K and 3-19 vol.% O2. In the future, the models can be used to reduce NO emissions in new combustion systems.
Resumo:
Användning av biomassa som energikälla för produktion av el och värme är ett sätt att minska beroendet av fossila bränslen och höja självförsörjningen av energi. Fossila bränslen är den främsta källan till koldioxid utsläpp förorsakad av människan. Biomassa, å andra sidan, betraktas som en koldioxidneutral energikälla. Svavlet och kvävet i biomassan bildar dock föroreningar såsom kväveoxider (NOX) och svaveldioxid (SO2), som bidrar till försurning av mark och sjöar. Svavlet i bränslet kan även både förorsaka och förhindra korrosion i en förbränningsanläggning, beroende på förbränningen och bränslet. Huvudsyftet med detta arbete var att få en bättre förståelse om hur utsläppen av NOX och SO2 bildas från bränslebundet kväve och svavel vid förbränning av olika biobränslen. Mätkampanjer i fullskaliga förbränningsanläggningar utfördes, där gassammansättningen mättes i eldstaden och rökgasen. Förståelsen om gaskemin i eldstaden är viktig, för att möjliggöra utvecklandet av renare och effektivare förbränningsanläggningar. Ett annat syfte med arbetet var att klargöra om sulfatering av askkomponenter vid förbränning av biobränslen med olika askegenskaper. Alkaliklorider som bildas vid biomassaförbränning kan orsaka korrosion av värmeöverföringsytor. Svavlet i bränslet visade sig ha en viktig roll i att sulfatera alkaliklorider till mindre korrosiva alkalisulfater. Närvaron av gasformig svavelsyra i rökgaskanalen av förbränningsanläggningar studerades även. Kondensering av svavelsyra leder till korrosion av rökgaskanalen och dess delar. Om svavelsyrakoncentrationen i rökgasen är känd, kan daggpunktstemperaturen beräknas och kondensering av svavelsyra förhindras. I arbetet utvecklades en mätmetod för att mäta låga koncentrationer av gasformig svavelsyra i rökgaser. Denna metod användes för att undersöka risken av lågtemperaturkorrosion orsakad av svavelsyra i förbränningsanläggningar. ------------------------------------------------------------------------------------------------------------ Käyttämällä biomassaa energianlähteenä voidaan vähentää sähkön- ja lämmöntuotannon riippuvuutta fossiilisiin polttoaineisiin. Biomassan käytöllä voidaan myös lisätä energiantuotannon omavaraisuutta. Fossiiliset polttoaineet ovat pääasiallinen syy ihmisen aiheuttamiin hiilidioksidipäästöihin. Biomassa sen sijaan luetaan hiilidioksidineutraaleihin energianlähteisiin. Biopolttoaineiden käytössä tosin vapautuu typpi- ja rikkioksideja, jotka edesauttavat maaperän ja merien happamoitumista. Lisäksi biopolttoaineen rikki voi sekä vähentää että aiheuttaa laitteiden korroosiota energiantuotannossa riippuen biopolttoaineesta ja palamisesta. Tämän työn päätavoitteena oli selvittää mitä biopolttoaineeseen sitoutuneelle typelle ja rikille tapahtuu teollisissa polttolaitoksissa. Kyseisten oksidien muodostumista tutkittiin polttamalla eri biomassoja polttolaitoksissa. Tutkimukset toteutettiin mittauskampanjoilla useissa polttolaitoksissa. Kaasujen koostumusta mitattiin sekä tulipesässä, että savukaasuista. Kaasujen koostumus varsinkin tulipesässä on tärkeää, jotta tulevaisuudessa voidaan rakentaa puhtaampia ja tehokkaampia polttolaitoksia. Työn toisena tavoitteena oli selvittää biomassan polton yhteydessä tapahtuvaa tuhkan sulfatoitumista. Alkalikloridit, joita muodostuu biomassan poltossa, voivat aiheuttaa lämmönsiirtopintojen korroosiota. Rikki osoittautui tärkeäksi osaksi prosessia, jossa korroosiota aiheuttavat alkalikloridit sulfatoituivat vähemmän korrosoiviksi alkalisulfaateiksi. Myös kaasumaisen rikkihapon läsnäoloa savukaasuissa tutkittiin. On todettu, että kaasumuotoinen rikkihappo johtaa korroosioon savukaasukanavan kylmässä päässä ja sen eri osissa rikkihapon tiivistyessä lämpötilan laskiessa. Mikäli rikkihapon pitoisuus savukaasussa tiedetään, sen kastepiste voidaan laskea ja tiivistyminen estää. Tässä työssä kehitettiin mittausmenetelmä rikkihapon alhaisten pitoisuuksien mittaamiseen. Menetelmää hyödynnettiin polttolaitoksissa, joissa tutkittiin rikkihapon tiivistymisestä johtuvaa korroosiota.
Resumo:
Many studies have demonstrated the beneficial influence of nitrogen doses on corn dry grain yield and green ear yield. Due to a growing concern with environmental degradation, many agricultural practices, adopted in the past, are being reexamined. With regard to weed control, strategies that employ mechanical control, including intercrops, are being the object of renewed interest. The purpose of this study was to evaluate the effects of the application of nitrogen doses (0, 40, 80, and 120 kg N ha-1; as ammonium sulfate) and weed control on the growth, green ear yield, and grain yield of the AG 1051 corn cultivar. A randomized block experimental design with split-plots and nine replications was adopted. In addition to nitrogen rates, the AG 1051 cultivar was submitted to the following treatments, applied to subplots: no weeding, two hoeings (at 20 and 40 days after sowing), and intercropping with gliricídia (Gliricidia sepium). Gliricidia was sowed at corn planting, between the corn rows, using two seedlings per pit, in pits spaced 0.30 m apart. Gliricidia did not provide weed control, and gave plant growth, green ear yield and grain yield values similar to the no weeding treatment. However, regarding the number of mature ears got, intercropping with gliricidia did not differ from the two-hoeing treatment. Weed control did not have an effect on plant height and number of marketable, husked green ears, with the application of 120 kg N ha-1; indicating that nitrogen improved the corn's competitive ability. The two-hoeing treatment provided the best means for total green ears weight, number of marketable husked ears, both unhusked and husked marketable ear weight, grain yield and its components than the other treatments. Nitrogen application increased corn growth, green ear yield, and grain yield, as well as weed green biomass, but reduced the stand and growth of gliricidia.
Resumo:
The objective of this work was to determine the coefficients of sorption and desorption of picloram in Ultisol (PVA) and Oxisol (LVA), displaying different physical and chemical characteristics. Samples of soil were collected at the 0 20 cm depth in degraded pasture areas in Viçosa-MG. Firstly, the equilibrium time between the herbicide in solution and the herbicide which was sorbed in the soil was determined by the Batch Equilibrium method. The time required was 24 hours. Sorption and desorption studies were carried out under controlled laboratory conditions; the sorption evaluation consisted in adding 10.0 mL of herbicide solutions at different concentrations to tubes containing 2.00 g of soil, with vertical rotary agitation being maintained during the pre-determined equilibrium time. After centrifugation, supernatant extract cleaning and filtration, herbicide concentration was determined by high performance liquid chromatography (HPLC) with UV detection at 254 nm. Desorption was evaluated using the samples in the tubes after the sorption tests. The Freundlich model was used for interpretation of the sorption process. Ultisol showed higher adsorption coefficient (Kf a) compared with Oxisol, which may be attributed to the lower pH of the soil and its higher organic matter content. Desorption process occurred in both soils; the LVA allowed greater release of the previously sorbed molecules.
Resumo:
The study of the dynamics of a herbicide in the soil focus on the interactions with environmental components to obtain agronomic efficiency, ensuring selectivity to the culture and risk reduction of environmental impact. This study evaluated the sorption process of fomesafen in the Brazilian soils Ultisol, Cambisol, and Organosol. Besides soil, washed sand was used as an inert material for determination of the sorption ratio of fomesafen in the soil. The bioassay method was applied, using Sorghum vulgare plants as bio-indicator of herbicide presence. Plant poisoning evaluation and harvest for dry matter determination were carried out 21 days after sorghum sowing. To calculate C50, the nonlinear log-logistic model was applied and sorption ratios of the herbicide were obtained in different soils. The decreasing sorption ratio of formesafen in the soils was: Organosol > Ultisol > Cambisol. It was concluded that the contents of organic matter and clay in the soils were the attributes that most influenced fomesafen sorption.
Resumo:
The objective of this study was to evaluate oxadiazon sorption in different soils of the Brazilian Cerrado, highlighting the correlations of lethal doses of this herbicide capable of inhibiting 50% of the dry matter accumulation of the bio-indicator (LD50) among the chemical characteristics of the soil and its direct and indirect effects. The experiment was carried out in a greenhouse in a randomized block design and four repetitions. Each experimental unit consisted of a pot with increasing rates of oxadiazon and oat (Avena sativa), as the bio-indicator species. For sorption evaluation, washed sand and 22 soils (substrates) from Cerrado Brazilian's Alliaceae cultivated areas were used. LD50 and sorption ratio (SR) = [(LD50soil - LD50sand)/LD50sand] to the substrates were determined. Pearson correlation analysis was performed between the chemical characteristics of the substrates and the LD50 of oxadiazon. A path analysis was quantified, to deploy only the significant correlations estimated in direct and indirect effects of the characters on LD50, which is a basic variable. A more pronounced LD50 (528.09 g ha-1) for the Cerrado soil sample resulted in higher SR (> 53.00), while in the washed sand substrate, LD50 corresponded only to 9.74 g ha-1 of the oxadiazon (available in soil). It was concluded that oxadiazon sorption is influenced by the chemical characteristics of the soils, highlighting the correlation with pH (CaCl2), magnesium content, aluminum, organic matter, organic carbon, and aluminum saturation.
Resumo:
A study was conducted to evaluate the sorption and desorption of 14C herbicide saflufenacil (pyrimidinedione) in two soils in the State of São Paulo, classified as Red Yellow Latosol with clayey texture (LVA-1) and medium texture (LVA-2), using the batch method through isotherms. The soils were air dried and sieved a 2 mm mesh. The radioactivity was determined by liquid scintillation spectrometry in acclimatized room (25 ± 2 °C). Sorption isotherms were conducted for 5 concentrations of saflufenacil (5.0; 2.5; 1.0; 0.5 and 0.05 μg mL-1) and the results were adjusted to the Freundlich equation, thus obtaining the parameters of sorption followed by two extractions with 0.01 M CaCl2 to determine desorption parameters similarly to sorption. The results showed that saflufenacil sorption was low for both soils studied, being greater for the LVA with higher organic matter content. The desorption coefficients were greater than their sorption coefficients, suggesting the occurrence of hysteresis. The sorption and desorption isotherms (classified as type C isotherms), hysteresis and the t-test between the angular coefficient of the respective isotherms showed that both the sorption and desorption occur with equal intensity.