949 resultados para Nitric oxide synthase 3 polymorphisms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistent pulmonary hypertension of the newborn (PPHN) is a life threatening condition associated with an increased risk of neurodevelopmental impairment. The recommended treatment for this condition is inhaled nitric oxide (iNO) and has been used in our Neonatal Intensive Care Unit since 1998. We prospectively offered neurodevelopmental follow-up to children treated with iNO for PPHN, including extensive neurological evaluation, developmental/cognitive evaluation at 18 months and 3.5-5 years old, and evaluated the rate of severe and moderate handicap and normal neurodevelopmental outcome, compared to a control group and the literature. Population consisted of 29 patients treated only with iNO, born between 01.01.1999 and 31.12.2005 (study group), and 32 healthy term infants born in 1998 in our maternity (control group). During those seven years, 65 infants were admitted in our Unit with PPHN, of whom 40 were treated with iNO alone. 34 children survived (85%) and were offered neurodevelopmental follow-up, 7 children were lost to follow-up due to various reasons. 22 children were examined at the age of 18 months (76%) with a rate of moderate handicap of 22% (2 with expressive language delay, 2 with difficult behavior, and 1 child with moderate hearing loss), and a rate of major handicap of 4.5% (1 child with cerebral palsy due to perinatal stroke, and moderate hearing loss). At preschool age, 17 (50%) were examined, the rate of moderate handicap was 22% (4 borderline intelligence, 1 hearing loss), and the rate of major handicap was 4.5% (one child with cerebral palsy and hearing loss), compared to 26.9% and 0% in the control group. Mean developmental quotient at 18 months was 100.3 ± 8.7 (control group 118.3), and at preschool age mean cognitive indices were within normal limits for the 2 tests performed at 3.5 or 5 years (108 ± 21, 94.4 ± 17). Most of the children with a less favorable neurodevelopmental outcome suffered from birth asphyxia (ruptured uterus, placental abruption, maternal hypotension, diabetic cardiomyopathy), and notably, the 2 children with sensorineural hearing loss both suffered from severe hypoxic-ischemic enkelopathy. Treatment with iNO was not the direct cause of the neurodevelopmental impairments observed in children treated for PPHN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We found previously that the nitric oxide donor DEA/NO enhanced lipid peroxidation, DNA fragmentation, and cytotoxicity in human bronchial epithelial cells (BEAS-2B) when they were cultured in LHC-8 medium containing the superoxide-generating system hypoxanthine/xanthine oxidase (HX/XO). We have now discovered that DEA/NO's prooxidant action can be reversed by raising the L-tyrosine concentration from 30 to 400 microM. DEA/NO also protected the cells when they were cultured in Dulbecco's Modified Eagle's Medium (DMEM), whose standard concentration of L-tyrosine is 400 microM. Similar trends were seen with the colon adenoma cell line CaCo-2. Since HPLC analysis of cell-free DMEM or LHC-8 containing 400 microM L-tyrosine, DEA/NO, and HX/XO revealed no evidence of L-tyrosine nitration, our data suggest the existence of an as-yet uncharacterized mechanism by which L-tyrosine can influence the biochemical and toxicological effects of reactive nitrogen species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The truncated hemoglobin N, HbN, of Mycobacterium tuberculosis is endowed with a potent nitric oxide dioxygenase (NOD) activity that allows it to relieve nitrosative stress and enhance in vivo survival of its host. Despite its small size, the protein matrix of HbN hosts a two-branched tunnel, consisting of orthogonal short and long channels, that connects the heme active site to the protein surface. A novel dual-path mechanism has been suggested to drive migration of O(2) and NO to the distal heme cavity. While oxygen migrates mainly by the short path, a ligand-induced conformational change regulates opening of the long tunnel branch for NO, via a phenylalanine (PheE15) residue that acts as a gate. Site-directed mutagenesis and molecular simulations have been used to examine the gating role played by PheE15 in modulating the NOD function of HbN. Mutants carrying replacement of PheE15 with alanine, isoleucine, tyrosine and tryptophan have similar O(2)/CO association kinetics, but display significant reduction in their NOD function. Molecular simulations substantiated that mutation at the PheE15 gate confers significant changes in the long tunnel, and therefore may affect the migration of ligands. These results support the pivotal role of PheE15 gate in modulating the diffusion of NO via the long tunnel branch in the oxygenated protein, and hence the NOD function of HbN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrophorins represent a unique class of heme proteins that are able to perform the delicate transportation and release of the free-radical gaseous messenger nitric oxide (NO) in a pH-triggered manner. Besides its ability to bind to phospholipid membranes, the N-terminus contains an additional Leu-Pro-Gly stretch, which is a unique sequence trait, and the heme cavity is significantly altered with respect to other nitrophorins. These distinctive features encouraged us to solve the X-ray crystallographic structures of NP7 at low and high pH and bound with different heme ligands (nitric oxide, histamine, imidazole). The overall fold of the lipocalin motif is well preserved in the different X-ray structures and resembles the fold of other nitrophorins. However, a chain-like arrangement in the crystal lattice due to a number of head-to-tail electrostatic stabilizing interactions is found in NP7. Furthermore, the X-ray structures also reveal ligand-dependent changes in the orientation of the heme, as well as in specific interactions between the A-B and G-H loops, which are considered to be relevant for the biological function of nitrophorins. Fast and ultrafast laser triggered ligand rebinding experiments demonstrate the pH-dependent ligand migration within the cavities and the exit route. Finally, the topological distribution of pockets located around the heme as well as from inner cavities present at the rear of the protein provides a distinctive feature in NP7, so that while a loop gated exit mechanism to the solvent has been proposed for most nitrophorins, a more complex mechanism that involves several interconnected gas hosting cavities is proposed for NP7.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of acute (120 mg/kg) and chronic (25 mg/kg, twice a day, for 4 days) intraperitonial injection of the nitric oxide (NO) synthase (NOS) inhibitor NG-nitro-L-arginine (L-NOARG) was evaluated on seizure induction by drugs such as pilocarpine and pentylenetetrazole (PTZ) and by sound stimulation of audiogenic seizure-resistant (R) and audiogenic seizure-susceptible (S) rats. Seizures were elicited by a subconvulsant dose of pilocarpine (100 mg/kg) only after NOS inhibition. NOS inhibition also simultaneously potentiated the severity of PTZ-induced limbic seizures (60 mg/kg) and protected against PTZ-induced tonic seizures (80 mg/kg). The audiogenic seizure susceptibility of S or R rats did not change after similar treatments. In conclusion, proconvulsant effects of NOS inhibition are suggested to occur in the pilocarpine model and in the limbic components of PTZ-induced seizures, while an anticonvulsant role is suggested for the tonic seizures induced by higher doses of PTZ, revealing inhibitor-specific interactions with convulsant dose and also confirming the hypothesis that the effects of NOS inhibitors vary with the model of seizure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous data from our laboratory have indicated that nitric oxide (NO) acting at the presynaptic level increases the amplitude of muscular contraction (AMC) of the phrenic-diaphragm preparations isolated from indirectly stimulated rats, but, by acting at the postsynaptic level, it reduces the AMC when the preparations are directly stimulated. In the present study we investigated the effects induced by NO when tetanic frequencies of stimulation were applied to in vivo preparations (sciatic nerve-anterior tibial muscle of the cat). Intra-arterial injection of NO (0.75-1.5 mg/kg) induced a dose-dependent increase in the Wedensky inhibition produced by high frequencies of stimulation applied to the motor nerve. Intra-arterial administration of 7.2 µg/kg methylene blue did not produce any change in AMC at low frequencies of nerve stimulation (0.2 Hz), but antagonized the NO-induced Wedensky inhibition. The experimental data suggest that NO-induced Wedensky inhibition may be mediated by the guanylate cyclase-cGMP pathway

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO) plays a crucial role in reproduction at every level in the organism. In the brain, it activates the release of luteinizing hormone-releasing hormone (LHRH). The axons of the LHRH neurons project to the mating centers in the brain stem and by afferent pathways evoke the lordosis reflex in female rats. In males, there is activation of NOergic terminals that release NO in the corpora cavernosa penis to induce erection by generation of cyclic guanosine monophosphate (cGMP). NO also activates the release of LHRH which reaches the pituitary and activates the release of gonadotropins by activating neural NO synthase (nNOS) in the pituitary gland. In the gonad, NO plays an important role in inducing ovulation and in causing luteolysis, whereas in the reproductive tract, it relaxes uterine muscle via cGMP and constricts it via prostaglandins (PG).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypoxia elicits hyperventilation and hypothermia, but the mechanisms involved are not well understood. The nitric oxide (NO) pathway is involved in hypoxia-induced hypothermia and hyperventilation, and works as a neuromodulator in the central nervous system, including the locus coeruleus (LC), which is a noradrenergic nucleus in the pons. The LC plays a role in a number of stress-induced responses, but its participation in the control of breathing and thermoregulation is unclear. Thus, in the present study, we tested the hypothesis that LC plays a role in the hypoxia-induced hypothermia and hyperventilation, and that NO is involved in these responses. Electrolytic lesions were performed bilaterally within the LC in awake unrestrained adult male Wistar rats weighing 250-350 g. Body temperature and pulmonary ventilation (VE) were measured. The rats were divided into 3 groups: control (N = 16), sham operated (N = 7) and LC lesioned (N = 19), and each group received a saline or an NG-nitro-L-arginine methyl ester (L-NAME, 250 µg/µl) intracerebroventricular (icv) injection. No significant difference was observed between control and sham-operated rats. Hypoxia (7% inspired O2) caused hyperventilation and hypothermia in both control (from 541.62 ± 35.02 to 1816.18 ± 170.7 and 36.3 ± 0.12 to 34.4 ± 0.09, respectively) and LC-lesioned rats (LCLR) (from 694.65 ± 63.17 to 2670.29 ± 471.33 and 36 ± 0.12 to 35.3 ± 0.12, respectively), but the increase in VE was higher (P<0.05) and hypothermia was reduced (P<0.05) in LCLR. L-NAME caused no significant change in VE or in body temperature under normoxia, but abolished both the hypoxia-induced hyperventilation and hypothermia. Hypoxia-induced hyperventilation was reduced in LCLR treated with L-NAME. L-NAME also abolished the hypoxia-induced hypothermia in LCLR. The present data indicate that hypoxia-induced hyperventilation and hypothermia may be related to the LC, and that NO is involved in these responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study was to explore the regulatory mechanisms of free radicals during streptozotocin (STZ)-induced pancreatic damage, which may involve nitric oxide (NO) production as a modulator of cellular oxidative stress. Removal of oxygen species by incubating pancreatic tissues in the presence of polyethylene glycol-conjugated superoxide dismutase (PEG-SOD) (1 U/ml) produced a decrease in nitrite levels (42%) and NO synthase (NOS) activity (50%) in diabetic but not in control samples. When NO production was blocked by N G-monomethyl-L-arginine (L-NMMA) (600 µM), SOD activity increased (15.21 ± 1.23 vs 24.40 ± 2.01 U/mg dry weight). The increase was abolished when the NO donor, spermine nonoate, was added to the incubating medium (13.2 ± 1.32). Lipid peroxidation was lower in diabetic tissues when PEG-SOD was added (0.40 ± 0.02 vs 0.20 ± 0.03 nmol/mg protein), and when L-NMMA blocked NOS activity in the incubating medium (0.28 ± 0.05); spermine nonoate (100 µM) abolished the decrease in lipoperoxide level (0.70 ± 0.02). We conclude that removal of oxygen species produces a decrease in pancreatic NO and NOS levels in STZ-treated rats. Moreover, inhibition of NOS activity produces an increase in SOD activity and a decrease in lipoperoxidation in diabetic pancreatic tissues. Oxidative stress and NO pathway are related and seem to modulate each other in acute STZ-induced diabetic pancreas in the rat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that exogenously generated nitric oxide (NO) inhibits smooth muscle cell proliferation. In the present study, we stimulated rabbit vascular smooth muscle cells (RVSMC) with E. coli lipopolysaccharide (LPS), a known inducer of NO synthase transcription, and established a connection between endogenous NO, phosphorylation/dephosphorylation-mediated signaling pathways, and DNA synthesis. Non-confluent RVSMC were cultured with 0, 5, 10, or 100 ng/ml of the endotoxin. NO release was increased by 86.6% (maximum effect) in low-density cell cultures stimulated with 10 ng/ml LPS as compared to non-stimulated controls. Conversely, LPS (5 to 100 ng/ml) did not lead to enhanced NO production in multilayered (high density) RVSMC. DNA synthesis measured by thymidine incorporation showed that LPS was mitogenic only to non-confluent RVSMC; furthermore, the effect was prevented statistically by aminoguanidine (AG), a potent inhibitor of the inducible NO synthase, and oxyhemoglobin, an NO scavenger. Finally, there was a cell density-dependent LPS effect on protein tyrosine phosphatase (PTP) and ERK1/ERK2 mitogen-activated protein (MAP) kinase activities. Short-term transient stimulation of ERK1/ERK2 MAP kinases was maximal at 12 min in non-confluent RVSMC and was prevented by preincubation with AG, whereas PTP activities were inhibited in these cells after 24-h LPS stimulation. Conversely, no significant LPS-mediated changes in kinase or phosphatase activities were observed in high-density cells. LPS-induced NO generation by RVSMC may switch on a cell density-dependent proliferative signaling cascade, which involves the participation of PTP and the ERK1/ERK2 MAP kinases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Techniques for collecting exhaled nitric oxide (ENO) recommend the use of antibacterial filters of 0.3 µm. The aim of the present study was to compare the measurements of ENO obtained with two different filtering devices. Air samples from 17 asthmatic and 17 non-asthmatic subjects were collected by a recommended off-line technique using two different mouthpieces: 1) the Sievers disposable tool (A) under a breathing pressure of 18 cmH2O, and 2) a mouthpiece containing a HEPA filter (B) under a breathing pressure of 12 cmH2O. The nitric oxide samples were collected into an impermeable reservoir bag. Values for ENO were compared using two-way repeated measures ANOVA followed by the Tukey test. Agreement was assessed by Bland-Altman analysis. ENO values obtained with mouthpieces A and B were comparable for asthmatic (mean ± SEM, 42.9 ± 6.9 vs 43.3 ± 6.6 ppb) and non-asthmatic (13.3 ± 1.3 vs 13.7 ± 1.1 ppb) subjects. There was a significant difference in ENO between asthmatics and non-asthmatics using either mouthpiece A (P<0.001) or B (P<0.001). There was a positive correlation between mouthpiece A and mouthpiece B for both groups. The Bland-Altman limits of agreement were considered to be acceptable. Mouthpiece B was less expensive than A, and these data show that it can be used without compromising the result. Our data confirm reports of higher ENO values in the presence of airway inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study was to identify disturbances of nitric oxide radical (·NO) metabolism and the formation of cholesterol oxidation products in human essential hypertension. The concentrations of·NO derivatives (nitrite, nitrate, S-nitrosothiols and nitrotyrosine), water and lipid-soluble antioxidants and cholesterol oxides were measured in plasma of 11 patients with mild essential hypertension (H: 57.8 ± 9.7 years; blood pressure, 148.3 ± 24.8/90.8 ± 10.2 mmHg) and in 11 healthy subjects (N: 48.4 ± 7.0 years; blood pressure, 119.4 ± 9.4/75.0 ± 8.0 mmHg).Nitrite, nitrate and S-nitrosothiols were measured by chemiluminescence and nitrotyrosine was determined by ELISA. Antioxidants were determined by reverse-phase HPLC and cholesterol oxides by gas chromatography. Hypertensive patients had reduced endothelium-dependent vasodilation in response to reactive hyperemia (H: 9.3 and N: 15.1% increase of diameter 90 s after hyperemia), and lower levels of ascorbate (H: 29.2 ± 26.0, N: 54.2 ± 24.9 µM), urate (H: 108.5 ± 18.9, N: 156.4 ± 26.3 µM), ß-carotene (H: 1.1 ± 0.8, N: 2.5 ± 1.2 nmol/mg cholesterol), and lycopene (H: 0.4 ± 0.2, N: 0.7 ± 0.2 nmol/mg cholesterol), in plasma, compared to normotensive subjects. The content of 7-ketocholesterol, 5alpha-cholestane-3ß,5,6ß-triol and 5,6alpha-epoxy-5alpha-cholestan-3alpha-ol in LDL, and the concentration of endothelin-1 (H: 0.9 ± 0.2, N: 0.7 ± 0.1 ng/ml) in plasma were increased in hypertensive patients. No differences were found for ·NO derivatives between groups. These data suggest that an increase in cholesterol oxidation is associated with endothelium dysfunction in essential hypertension and oxidative stress, although ·NO metabolite levels in plasma are not modified in the presence of elevated cholesterol oxides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects induced by nitric oxide (NO) in different tissues depend on direct and/or indirect interactions with K+ channels. The indirect interaction of NO is produced by activation of guanylyl cyclase which increases the intracellular cGMP. Since NO, cGMP and 4-aminopyridine alone induce tetanic fade and increase amplitude of muscular contractions in isolated rat neuromuscular preparations, the present study was undertaken to determine whether or not the neuromuscular effects of NO and 8-Br-cGMP can be modified by 4-aminopyridine. Using the phrenic nerve and diaphragm muscle isolated from male Wistar rats (200-250 g), we observed that L-arginine (4.7 mM) and 8-Br-cGMP (18 µM), in contrast to D-arginine, induced an increase in the amplitude of muscle contraction (10.5 ± 0.7%, N = 10 and 8.0 ± 0.7%, N = 10) and tetanic fade (15 ± 2.0%, N = 8 and 11.6 ± 1.7%, N = 8) at 0.2 and 50 Hz, respectively. N G-nitro-L-arginine (4 mM, N = 8 and 8 mM, N = 8) antagonized the effects of L-arginine. 4-Aminopyridine (1 and 10 µM) caused a dose-dependent increase in the amplitude of muscle contraction (15 ± 1.8%, N = 9 and 40 ± 3.1%, N = 10) and tetanic fade (17.7 ± 3.3%, N = 8 and 37.4 ± 1.3%, N = 8). 4-Aminopyridine (1 µM, N = 8) did not cause any change in muscle contraction amplitude or tetanic fade of preparations previously paralyzed with d-tubocurarine or stimulated directly. The effects induced by 4-aminopyridine alone were similar to those observed when the drug was administered in combination with L-arginine or 8-Br-cGMP. The data suggest that the blockage of K+ channels produced by 4-aminopyridine inhibits the neuromuscular effects induced by NO and 8-Br-cGMP. Therefore, the presynaptic effects induced by NO seem to depend on indirect interactions with K+ channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical forces including pressure and shear stress play an important role in vascular homeostasis via the control of the production and release of a variety of vasoactive factors. An increase in vascular shear stress is accompanied by nitric oxide (NO) release and NO synthase activation. Previously, we have demonstrated that shear stress induces angiotensin-I converting enzyme (ACE) down-regulation in vivo and in vitro. In the present study, we determined whether NO participates in the shear stress-induced ACE suppression response. Rabbit aortic endothelial cells were evaluated using the NO synthase inhibitor L-NAME, and two NO donors, diethylamine NONOate (DEA/NO) and sodium nitroprusside (SNP). Under static conditions, incubation of endothelial cells with 1 mM L-NAME for 18 h increased ACE activity by 27% (from 1.000 ± 0.090 to 1.272 ± 0.182) while DEA/NO and SNP (0.1, 0.5 and 1 mM) caused no change in ACE activity. Interestingly, ACE activity was down-regulated similarly in the presence or absence of L-NAME (delta(0 mM) = 0.26 ± 0.055, delta(0.1 mM) = 0.21 ± 0.22, delta(1 mM) = 0.36 ± 0.13) upon 18 h shear stress activation (from static to 15 dyn/cm²). Taken together, these results indicate that NO can participate in the maintenance of basal ACE levels in the static condition but NO is not associated with the shear stress-induced inactivation of ACE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are only a few studies on the molecular mechanisms underlying the peripheral antihyperalgesic effect of opioids. The aim of this study was to investigate the molecular bases of the peripheral antihyperalgesic effect of fentanyl in a model of prostaglandin-induced chemical hyperalgesia. Prostaglandin E2 (1.4 nmol) injected into one hind paw of male Wistar rats (200-250 g, N = 6 in each experimental or control group) pretreated with indomethacin (2.5 mg/kg) potentiated the nocifensive response to formalin (1%) injection made 60 min later. Drugs applied locally 30 min after prostaglandin E2 induced the following effects: fentanyl (0.1-1.0 nmol) caused a dose-dependent reversal of the hyperalgesic state, naloxone (2 nmol) co-injected with fentanyl (1 nmol) completely reversed the antihyperalgesic effect, Nomega-nitro-L-arginine (NOARG, 0.05-0.2 µmol) in combination with fentanyl (1.0 nmol) caused a dose-dependent inhibition of the antihyperalgesic effect of fentanyl, co-administration of L-arginine (0.5 µmol) with NOARG (0.2 µmol) plus fentanyl (1.0 nmol) fully restored the antihyperalgesic effect, and the cyclic-GMP phosphodiesterase inhibitor UK-114,542-27 (5-[2-ethoxy-5-(morpholinylacetyl) phenyl]-1,6-dihydro-1-methyl-3-propyl-7H-pyrazolo [4,3-d]-pyrimidin-7-one methanesulfonate monohydrate; 0.5-2.0 µmol) potentiated a subeffective dose of fentanyl (0.1 nmol) in a dose-dependent manner. However, UK-114,542-27 (2.0 µmol) injected alone did not produce this antihyperalgesic effect. Systemically administered fentanyl (1.0 nmol, sc) did not cause antinociception. Taken together, these results support the view that fentanyl reverses prostaglandin E2-induced hyperalgesia, probably by activating an opioid receptor at the periphery, and furthermore the L-arginine/nitric oxide/cyclic-GMP pathway may mediate this peripheral effect of fentanyl.