997 resultados para Neutrino Masses
Resumo:
Mode of access: Internet.
Resumo:
"Prepared under contract no. NAS 7-100, National Aeronautics and Space Administration."
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
Includes indexes.
Resumo:
Mode of access: Internet.
Resumo:
German and French.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
A new, fast, continuous flow technique is described for the simultaneous determination of 633 S and delta(34)S using SO masses 48, 49 and 50. Analysis time is similar to5min/sample with measurement precision and accuracy better than +/-0.3parts per thousand. This technique, which has been set up using IAEA Ag2S standards S-1, S-2 and S-3, allows for the fast determination of mass-dependent or mass-independent fractionation (MIF) effects in sulfide, organic sulfur samples and possibly sulfate. Small sample sizes can be analysed directly, without chemical pre-treatment. Robustness of the technique for natural versus artificial standards was demonstrated by analysis of a Canon Diablo troilite, which gave a delta(33)S of 0.04parts per thousand and a delta(34)S of -0.06parts per thousand compared to the values obtained for S-1 of 0.07parts per thousand and -0.20parts per thousand, respectively. Two pyrite samples from a banded-iron formation from the 3710 Ma Isua Greenstone Belt were analysed using this technique and yielded MIF (Delta(33)S of 2.45 and 3.31parts per thousand) comparable to pyrite previously analysed by secondary ion probe. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
AMS Subj. Classification: 83C15, 83C35
Resumo:
SuperScaling model (SuSA) predictions to neutrino-induced charged-current pi(+) production in the Delta-resonance region are explored under MiniBooNE experimental conditions. The SuSA charged-current pi(+) results are in good agreement with data on neutrino flux-averaged double-differential cross sections. The SuSA model for quasielastic scattering and its extension to the pion production region are used for predictions of charged-current inclusive neutrino-nucleus cross sections. Results are also compared with the T2K experimental data for inclusive scattering.
Resumo:
We present a study of the Galactic Center region as a possible source of both secondary gamma-ray and neutrino fluxes from annihilating dark matter. We have studied the gamma-ray flux observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source. The data are well fitted as annihilating dark matter in combination with an astrophysical background. The analysis was performed by means of simulated gamma spectra produced by Monte Carlo event generators packages. We analyze the differences in the spectra obtained by the various Monte Carlo codes developed so far in particle physics. We show that, within some uncertainty, the HESS data can be fitted as a signal from a heavy dark matter density distribution peaked at the Galactic Center, with a power-law for the background with a spectral index which is compatible with the Fermi-Large Area Telescope (LAT) data from the same region. If this kind of dark matter distribution generates the gamma-ray flux observed by HESS, we also expect to observe a neutrino flux. We show prospective results for the observation of secondary neutrinos with the Astronomy with a Neutrino Telescope and Abyss environmental RESearch project (ANTARES), Ice Cube Neutrino Observatory (Ice Cube) and the Cubic Kilometer Neutrino Telescope (KM3NeT). Prospects solely depend on the device resolution angle when its effective area and the minimum energy threshold are fixed.