881 resultados para Neuronal Plasticity
Resumo:
Voltage-gated sodium channels (VGSC) have been linked to inherited forms of epilepsy. The expression and biophysical properties of VGSC in the hippocampal neuronal culture model have not been clarified. In order to evaluate mechanisms of epileptogenesis that are related to VGSC, we examined the expression and function of VGSC in the hippocampal neuronal culture model in vitro and spontaneously epileptic rats (SER) in vivo. Our data showed that the peak amplitude of transient, rapidly–inactivating Na+ current (INa,T) in model neurons was significantly increased compared with control neurons, and the activation curve was shifted to the negative potentials in model neurons in whole cell recording by patch–clamp. In addition, channel activity of persistent, non-inactivating Na+ current (INa,P) was obviously increased in the hippocampal neuronal culture model as judged by single–channel patch–clamp recording. Furthermore, VGSC subtypes NaV1.1, NaV1.2 and NaV1.3 were up-regulated at the protein expression level in model neurons and SER as assessed by Western blotting. Four subtypes of VGSC proteins in SER were clearly present throughout the hippocampus, including CA1, CA3 and dentate gyrus regions, and neurons expressing VGSC immunoreactivity were also detected in hippocampal neuronal culture model by immunofluorescence. These findings suggested that the up-regulation of voltage-gated sodium channels subtypes in neurons coincided with an increased sodium current in the hippocampal neuronal culture model, providing a possible explanation for the observed seizure discharge and enhanced excitability in epilepsy.
Resumo:
Animals often show behavioural plasticity with respect to predation risk but also show behavioural syndromes in terms of consistency of responses to different stimuli. We examine these features in the freshwater pearl mussel. These bivalves often aggregate presumably to reduce predation risk to each individual. Predation risk, however, will be higher in the presence of predator cues. Here we use dimming light, vibration and touch as novel stimuli to examine the trade-off between motivation to feed and motivation to avoid predation. We present two experiments that each use three sequential novel stimuli to cause the mussels to close their valves and hence cease feeding. We find that mussels within a group showed shorter closure times than solitary mussels, consistent with decreased vulnerability to predation in group-living individuals. Mussels exposed to the odour of a predatory crayfish showed longer closures than control mussels, highlighting the predator assessment abilities of this species. However, individuals showed significant consistency in their closure responses across the trial series, in line with behavioural syndrome theory. Our results show that bivalves trade-off feeding and predator avoidance according to predation risk but the degree to which this is achieved is constrained by behavioural consistency. © 2011 Elsevier B.V.
Resumo:
ABSTRACT (250 words)
BACKGROUND: The mechanism underlying respiratory virus-induced cough hypersensitivity is unknown. Up-regulation of airway neuronal receptors responsible for sensing physical and chemical stimuli is one possibility and the transient receptor potential (TRP) channel family are potential candidates. We have used an in vitro model of sensory neurones and human rhinovirus (HRV-16) to study the effect of virus infection on TRP expression.
METHODS: IMR32 neuroblastoma cells were differentiated in culture to express three TRP channels, TRPV1, TRPA1 and TRPM8. Flow cytometry and qRT-PCR were used to measure TRP channel protein and mRNA levels following inoculation with live virus, inactivated virus, virus- induced soluble factors or pelleted virus particles. Multiplex bioassay was used to determine nerve growth factor (NGF), interleukin (IL)-1ß, IL-6 and IL-8 levels in response to infection.
RESULTS: Early up-regulation of TRPA1 and TRPV1 expression occurred 2 to4 hours post infection. This was independent of replicating virus as virus induced soluble factors alone were sufficient to increase channel expression 50 and 15 fold, respectively. NGF, IL-6 and IL-8 levels, increased in infected cell supernatants, represent possible candidates. In contrast, TRPM8 expression was maximal at 48 hours (9.6 fold) and required virus replication rather than soluble factors
CONCLUSIONS We show for the first time that rhinovirus can infect neuronal cells. Furthermore, infection causes up-regulation of TRP channels by channel specific mechanisms. Increase in TRPA1 and TRPV1 levels can be mediated by soluble factors induced by infection whereas TRPM8 requires replicating virus. TRP channels may be novel therapeutic targets for controlling virus-induced cough.
Resumo:
Neuronal dysfunction has been noted very soon after the induction of diabetes by streptozotocin injection in rats. It is not clear from anatomical evidence whether glial cell dysfunction accompanies the well-documented neuronal deficit. Here, we isolate the Müller cell driven slow-P3 component of the full-field electroretinogram and show that it is attenuated at 4 weeks following the onset of streptozotocin-hyperglycaemia. We also found a concurrent reduction in the sensitivity of the phototransduction cascade, as well as in the components of the electroretinogram known to indicate retinal ganglion cell and amacrine cell integrity. Our data support the idea that neuronal and Müller cell dysfunction occurs at the same time in streptozotocin-induced hyperglycaemia.
Resumo:
Silicon carbide (SiC) is an important orthopaedic material due to its inert nature and superior mechanical and tribological properties. Some of the potential applications of silicon carbide include coating for stents to enhance hemocompatibility, coating for prosthetic-bearing surfaces and uncemented joint prosthetics. This study is the first to explore nanomechanical response of single crystal 4H-SiC through quasistatic nanoindentation. Displacement controlled quasistatic nanoindentation experiments were performed on single crystal 4H-SiC specimen using a blunt Berkovich indenter (300 nm tip radius) at extremely fine indentation depths of 5 nm, 10 nm, 12 nm, 20 nm, 25 nm and 50 nm. Load-displacement curve obtained from the indentation experiments showed yielding or incipient plasticity in 4H-SiC typically at a shear stress of about 21 GPa (~an indentation depth of 33.8 nm) through a pop-in event. An interesting observation was that the residual depth of indent showed three distinct patterns: (i) Positive depth hysteresis above 33 nm, (ii) no depth hysteresis at 12 nm, and (iii) negative depth hysteresis below 12 nm. This contrasting depth hysteresis phenomenon is hypothesized to originate due to the existence of compressive residual stresses (upto 143 MPa) induced in the specimen by the polishing process prior to the nanoindentation
Resumo:
Objective: Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process.
Approach and Results: We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α–mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation.
Conclusions: Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α–mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.
Resumo:
Variability in metabolic scaling in animals, the relationship between metabolic rate (R) and body mass (M), has been a source of debate and controversy for decades. R is proportional to M-b, the precise value of b much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts b to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; b is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size.
Resumo:
The brain derived neurotrophic factor (BDNF) Val66Met polymorphism and stimulation duration are thought to play an important role in modulating motor cortex plasticity induced by non-invasive brain stimulation (NBS). In the present study we sought to determine whether these factors interact or exert independent effects in older adults. Fifty-four healthy older adults (mean age = 66.85 years) underwent two counterbalanced sessions of 1.5 mA anodal transcranial direct current stimulation (atDCS), applied over left M1 for either 10 or 20 min. Single pulse transcranial magnetic stimulation (TMS) was used to assess corticospinal excitability (CSE) before and every 5 min for 30 min following atDCS. On a group level, there was an interaction between stimulation duration and BDNF genotype, with Met carriers (n = 13) showing greater post-intervention potentiation of CSE compared to Val66Val homozygotes homozygotes (n = 37) following 20 min (p = 0.002) but not 10 min (p = 0.219) of stimulation. Moreover, Met carriers, but not Val/Val homozygotes, exhibited larger responses to TMS (p = 0.046) after 20 min atDCS, than following 10 min atDCS. On an individual level, two-step cluster analysis revealed a considerable degree of inter-individual variability, with under half of the total sample (42%) showing the expected potentiation of CSE in response to atDCS across both sessions. Intra-individual variability in response to different durations of atDCS was also apparent, with one-third of the total sample (34%) exhibiting LTP-like effects in one session but LTD-like effects in the other session. Both the inter-individual (p = 0.027) and intra-individual (p = 0.04) variability was associated with BDNF genotype. In older adults, the BDNF Val66Met polymorphism along with stimulation duration appears to play a role in modulating tDCS-induced motor cortex plasticity. The results may have implications for the design of NBS protocols for healthy and diseased aged populations.
Resumo:
The technique of externally bonding fiber-reinforced polymer (FRP) composites has become very popular worldwide for retrofitting existing reinforced concrete (RC) structures. Debonding of FRP from the concrete substrate is a typical failure mode in such strengthened structures. The bond behavior between FRP and concrete thus plays a crucial role in these structures. The FRP-to-concrete bond behavior has been extensively investigated experimentally, commonly using a single or double shear test of the FRP-to-concrete bonded joint. Comparatively, much less research has been concerned with numerical simulation, chiefly due to difficulties in the accurate modeling of the complex behavior of concrete. This paper presents a simple but robust finite-element (FE) model for simulating the bond behavior in the entire debonding process for the single shear test. A concrete damage plasticity model is proposed to capture the concrete-to-FRP bond behavior. Numerical results are in close agreement with test data, validating the model. In addition to accuracy, the model has two further advantages: it only requires the basic material parameters (i.e., no arbitrary user-defined parameter such as the shear retention factor is required) and it can be directly implemented in the FE software ABAQUS.
Resumo:
The technique of externally bonding fibre reinforced polymer (FRP) composites has been becoming popular worldwide for retrofitting existing reinforced concrete (RC) structures. A major failure mode in such strengthened structures is the debonding of FRP from the concrete substrate. The bond behaviour between FRP and concrete thus plays a crucial role in these structures. The FRP-to-concrete bond behaviour has been extensively investigated experimentally, commonly using the pull-off test of FRP-to-concrete bonded joint. Comparatively, much less research has been concerned with the numerical simulation of this bond behaviour, chiefly due to difficulties in accurately modelling the complex behaviour of concrete. This paper proposes a robust finite element (FE) model for simulating the bond behaviour in the entire loading process in the pull-off test. A concrete damage plasticity model based on the plastic degradation theory is proposed to overcome the weakness of the elastic degradation theory which has been commonly adopted in previous studies. The model produces results in very close agreement with test data. © Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2011.
Resumo:
The authors appreciate the discusser’s interest in the original paper and for the valuable discussion, which provides the opportunity to clarify and reiterate a few points made in the original paper. The comments and questions raised by the discusser are addressed in the following sections.
Resumo:
The cardiac neuronal nitric-oxide synthase (nNOS) has been described as a modulator of cardiac contractility. We have demonstrated previously that isoform 4b of the sarcolemmal calcium pump (PMCA4b) binds to nNOS in the heart and that this complex regulates beta-adrenergic signal transmission in vivo. Here, we investigated whether the nNOS-PMCA4b complex serves as a specific signaling modulator in the heart. PMCA4b transgenic mice (PMCA4b-TG) showed a significant reduction in nNOS and total NOS activities as well as in cGMP levels in the heart compared with their wild type (WT) littermates. In contrast, PMCA4b-TG hearts showed an elevation in cAMP levels compared with the WT. Adult cardiomyocytes isolated from PMCA4b-TG mice demonstrated a 3-fold increase in Ser(16) phospholamban (PLB) phosphorylation as well as Ser(22) and Ser(23) cardiac troponin I (cTnI) phosphorylation at base line compared with the WT. In addition, the relative induction of PLB phosphorylation and cTnI phosphorylation following isoproterenol treatment was severely reduced in PMCA4b-TG myocytes, explaining the blunted physiological response to the beta-adrenergic stimulation. In keeping with the data from the transgenic animals, neonatal rat cardiomyocytes overexpressing PMCA4b showed a significant reduction in nitric oxide and cGMP levels. This was accompanied by an increase in cAMP levels, which led to an increase in both PLB and cTnI phosphorylation at base line. Elevated cAMP levels were likely due to the modulation of cardiac phosphodiesterase, which determined the balance between cGMP and cAMP following PMCA4b overexpression. In conclusion, these results showed that the nNOS-PMCA4b complex regulates contractility via cAMP and phosphorylation of both PLB and cTnI.
Resumo:
O conhecimento de mecanismos de genómica funcional tem sido maioritariamente adquirido pela utilização de organismos modelo que são mantidos em condições laboratoriais. Contudo, estes organismos não reflectem as respostas a alterações ambientais. Por outro lado, várias espécies, ecologicamente bem estudadas, reflectem bem as interacções entre genes e ambiente mas que, das quais não existem recursos genéticos disponíveis. O imposex, caracterizado pela superimposição de caracteres sexuais masculinos em fêmeas, é induzido pelo tributilestanho (TBT) e trifenilestanho (TPT) e representa um dos melhores exemplos de disrupção endócrina com causas antropogénicas no ambiente aquático. Com o intuito de elucidar as bases moleculares deste fenómeno, procedeu-se à combinação das metodologias de pirosequenciação (sequenciação 454 da Roche) e microarrays (Agilent 4*180K) de forma a contribuir para um melhor conhecimento desta interacção gene-ambiente no gastrópode Nucella lapillus, uma espécie sentinela para imposex. O trancriptoma de N. lapillus foi sequenciado, reconstruído e anotado e posteriormente utilizado para a produção de um “array” de nucleótidos. Este array foi então utilizado para explorar níveis de expressão génica em resposta à contaminação por TBT. Os resultados obtidos confirmaram as hipóteses anteriormente propostas (esteróidica, neuroendócrina, retinóica) e adicionalmente revelou a existência de potenciais novos mecanismos envolvidos no fenómeno imposex. Evidência para alvos moleculares de disrupção endócrina não relacionados com funções reprodutoras, tais como, sistema imunitário, apoptose e supressores de tumores, foram identificados. Apesar disso, tendo em conta a forte componente reprodutiva do imposex, esta componente funcional foi a mais explorada. Assim, factores de transcrição e receptores nucleares lipofílicos, funções mitocondriais e actividade de transporte celular envolvidos na diferenciação de géneros estão na base de potenciais novos mecanismos associados ao imposex em N. lapillus. Em particular, foi identificado como estando sobre-expresso, um possível homólogo do receptor nuclear “peroxisome proliferator-activated receptor gamma” (PPARγ), cuja função na indução de imposex foi confirmada experimentalmente in vivo após injecção dos animais com Rosiglitazone, um conhecido ligando de PPARγ em vertebrados. De uma forma geral, os resultados obtidos mostram que o fenómeno imposex é um mecanismo complexo, que possivelmente envolve a cascata de sinalização envolvendo o receptor retinoid X (RXR):PPARγ “heterodimer” que, até à data não foi descrito em invertebrados. Adicionalmente, os resultados obtidos apontam para alguma conservação de mecanismos de acção envolvidos na disrupção endócrina em invertebrados e vertebrados. Finalmente, a informação molecular produzida e as ferramentas moleculares desenvolvidas contribuem de forma significativa para um melhor conhecimento do fenómeno imposex e constituem importantes recursos para a continuação da investigação deste fenómeno e, adicionalmente, poderão vir a ser aplicadas no estudo de outras respostas a alterações ambientais usando N. lapillus como organismo modelo. Neste sentido, N. lapillus foi também utilizada para explorar a adaptação na morfologia da concha em resposta a alterações naturais induzidas por acção das ondas e pelo risco de predação por caranguejos. O contributo da componente genética, plástica e da sua interacção para a expressão fenotípica é crucial para compreender a evolução de caracteres adaptativos a ambientes heterogéneos. A contribuição destes factores na morfologia da concha de N. lapillus foi explorada recorrendo a transplantes recíprocos e experiências laboratoriais em ambiente comum (com e sem influência de predação) e complementada com análises genéticas, utilizando juvenis provenientes de locais representativos de costas expostas e abrigadas da acção das ondas. As populações estudadas são diferentes geneticamente mas possuem o mesmo cariótipo. Adicionalmente, análises morfométricas revelaram plasticidade da morfologia da concha em ambas as direcções dos transplantes recíprocos e também a retenção parcial, em ambiente comum, da forma da concha nos indivíduos da F2, indicando uma correlação positiva (co-gradiente) entre heritabilidade e plasticidade. A presença de estímulos de predação por caranguejos estimulou a produção de conchas com labros mais grossos, de forma mais evidente em animais recolhidos de costas expostas e também provocou alterações na forma da concha em animais desta proveniência. Estes dados sugerem contra-gradiente em alterações provocadas por predação na morfologia da concha, na produção de labros mais grossos e em níveis de crescimento. O estudo das interacções gene-ambiente descritas acima demonstram a actual possibilidade de produzir recursos e conhecimento genómico numa espécie bem caracterizada ecologicamente mas com limitada informação genómica. Estes recursos permitem um maior conhecimento biológico desta espécie e abrirão novas oportunidades de investigação, que até aqui seriam impossíveis de abordar.