893 resultados para Neurokinin-1 receptor
Resumo:
The mononuclear phagocyte system (MPS) has been defined as a family of cells comprising bone marrow progenitors, blood monocytes and tissue macrophages. Macrophages are a major cell population in most of the tissues in the body, and their numbers increase further in inflammation, wounding and malignancy. Their trophic roles for other cell types in development and homeostasis are becoming increasingly evident. The receptor for macrophage colony-stimulating factor (CSF-1R) is expressed in a large proportion of cells considered to be mononuclear phagocytes, including antigen-presenting dendritic cells, which can be considered a specialized adaptive state rather than a separate lineage. The unity of the MPS is challenged by evidence that there is a separate embryonic phagocyte lineage, by the transdifferentiation and fusion of MPS cells with other cell types, and by evidence of local renewal of tissue macrophage populations as opposed to monocyte recruitment. The concept of the MPS may have partly outlived its usefulness.
Resumo:
We compared changes in markers of muscle damage and systemic inflammation after submaximal and maximal lengthening muscle contractions of the elbow flexors. Using a cross-over design, 10 healthy young men not involved in resistance training completed a submaximal trial (10 sets of 60 lengthening contractions at 10% maximum isometric strength, 1 min rest between sets), followed by a maximal trial (10 sets of three lengthening contractions at 100% maximum isometric strength, 3 min rest between sets). Lengthening contractions were performed on an isokinetic dynamometer. Opposite arms were used for the submaximal and maximal trials, and the trials were separated by a minimum of two weeks. Blood was sampled before, immediately after, 1 h, 3 h, and 1-4 d after each trial. Total leukocyte and neutrophil numbers, and the serum concentration of soluble tumor necrosis factor-alpha receptor 1 were elevated after both trials (P < 0.01), but there were no differences between the trials. Serum IL-6 concentration was elevated 3 h after the submaximal contractions (P < 0.01). The concentrations of serum tumor necrosis factor-alpha, IL-1 receptor antagonist, IL-10, granulocyte-colony stimulating factor and plasma C-reactive protein remained unchanged following both trials. Maximum isometric strength and range of motion decreased significantly (P < 0.001) after both trials, and were lower from 1-4 days after the maximal contractions compared to the submaximal contractions. Plasma myoglobin concentration and creatine kinase activity, muscle soreness and upper arm circumference all increased after both trials (P < 0.01), but were not significantly different between the trials. Therefore, there were no differences in markers of systemic inflammation, despite evidence of greater muscle damage following maximal versus submaximal lengthening contractions of the elbow flexors.
Resumo:
Historically, CGRP receptors have been classified as CGRP(1) or CGRP(2) subtypes, chiefly depending on their affinity for the antagonist CGRP(8-37). It has been shown that the complex between calcitonin receptor-like receptor (CRLR or CL) and receptor activity modifying protein (RAMP) 1 provides a molecular correlate for the CGRP(1) receptor; however this does not explain the range of affinities seen for CGRP(8-37) in isolated tissues. It is suggested that these may largely be explained by a combination of methodological factors and CGRP-responsive receptors generated by CL and RAMP2 or RAMP3 and complexes of RAMPs with the calcitonin receptor.
Resumo:
RAMPs (receptor activity-modifying proteins) are single-pass transmembrane proteins that associate with certain family-B GPCRs (G-protein-coupled receptors). Specifically for the CT (calcitonin) receptor-like receptor and the CT receptor, this results in profound changes in ligand binding and receptor pharmacology, allowing the generation of six distinct receptors with preferences for CGRP (CT gene-related peptide) adrenomedullin, amylin and CT. There are three RAMPs: RAMP1-RAMP3. The N-terminus appears to be the main determinant of receptor pharmacology whereas the transmembrane domain contributes to association of the RAMP with the GPCR. The N-terminus of all members of the RAMP family probably contains two disulphide bonds; a potential third disulphide is found in RAMP1 and RAMP3. The N-terminus appears to be in close proximity to the ligand and plays a key role in its binding, either directly or indirectly. BIBN4096BS, a CGRP antagonist, targets RAMP1 and this gives the compound very high selectivity for the human CGRP(1) receptor.
Resumo:
A neuronal cell line (NG115-401L-C3) was stimulated by mitogenic (angiotensin) and non-mitogenic (bradykinin) peptides and examined for the time course of changes in the levels of radiolabelled inositol phosphates and phospholipids. Both peptides stimulated the time-dependent production of Ins(1,4,5)P3 and related metabolites. Bradykinin caused a much larger increase in Ins(1,4,5)P3 than did angiotensin. However, both peptides stimulated similar rises in the levels of Ins(1,3,4)P3 and InsP4. Bradykinin but not angiotensin, caused a rapid (within 2 s) fall in the levels of PtdIns(4,5)P2 and PtdIns(4)P. Serum pretreatment of the cells caused a 2-3-fold potentiation of both the responses to bradykinin and angiotensin. Although significant levels of PtdIns(3)P were detected in resting cells neither mitogenic (angiotensin, insulin-like growth factor I, transforming growth factor beta) nor non-mitogenic (bradykinin, nerve growth factor interleukin-1) receptor activation changed its levels, arguing against regulation of either PtdIns 3-kinase or PtdIns(3)P phosphatase. We conclude that, as judged by the levels of its product. PtdIns(3)P, the enzyme PtdIns 3-kinase is not activated. This questions the significance of this activity in the receptor-mediated initiation of DNA synthesis.
Resumo:
The multivariable and progressive natural history of type 2 diabetes limits the effectiveness of available glucose-lowering drugs. Constraints imposed by comorbidities (notably cardiovascular disease and renal impairment) and the need to avoid hypoglycaemia, weight gain, and drug interactions further complicate the treatment process. These challenges have prompted the development of new formulations and delivery methods for existing drugs alongside research into novel pharmacological entities. Advances in incretin-based therapies include a miniature implantable osmotic pump to give continuous delivery of a glucagon-like peptide-1 receptor agonist for 6-12 months and once-weekly tablets of dipeptidyl peptidase-4 inhibitors. Hybrid molecules that combine the properties of selected incretins and other peptides are at early stages of development, and proof of concept has been shown for small non-peptide molecules to activate glucagon-like peptide-1 receptors. Additional sodium-glucose co-transporter inhibitors are progressing in development as well as possible new insulin-releasing biological agents and small-molecule inhibitors of glucagon action. Adiponectin receptor agonists, selective peroxisome proliferator-activated receptor modulators, cellular glucocorticoid inhibitors, and analogues of fibroblast growth factor 21 are being considered as potential new approaches to glucose lowering. Compounds that can enhance insulin receptor and post-receptor signalling cascades or directly promote selected pathways of glucose metabolism have suggested opportunities for future treatments. However, pharmacological interventions that are able to restore normal β-cell function and β-cell mass, normalise insulin action, and fully correct glucose homoeostasis are a distant vision.
Resumo:
The increasing prevalence, variable pathogenesis, progressive natural history, and complications of type 2 diabetes emphasise the urgent need for new treatment strategies. Longacting (eg, once weekly) agonists of the glucagon-like-peptide-1 receptor are advanced in development, and they improve prandial insulin secretion, reduce excess glucagon production, and promote satiety. Trials of inhibitors of dipeptidyl peptidase 4, which enhance the effect of endogenous incretin hormones, are also nearing completion. Novel approaches to glycaemic regulation include use of inhibitors of the sodium-glucose cotransporter 2, which increase renal glucose elimination, and inhibitors of 11ß-hydroxysteroid dehydrogenase 1, which reduce the glucocorticoid effects in liver and fat. Insulin-releasing glucokinase activators and pancreatic-G-protein-coupled fatty-acid-receptor agonists, glucagon-receptor antagonists, and metabolic inhibitors of hepatic glucose output are being assessed. Early proof of principle has been shown for compounds that enhance and partly mimic insulin action and replicate some effects of bariatric surgery.
Resumo:
The presence of obesity with type 2 diabetes increases morbidity and mortality from each condition. Excess adiposity accentuates insulin resistance and complicates the treatment of type 2 diabetes. Glucagon-like peptide 1 receptor agonists promote weight loss, whereas metformin, dipeptidyl peptidase 4 inhibitors, and a glucosidase inhibitors are typically weight neutral. The anabolic effects of increased insulin secretion and action restrict the benefits of treatment in obese patients. New treatments should ideally reduce hyperglycaemia and excess adiposity. Potential new treatments include analogues of intestinal and adipocyte hormones, inhibitors of renal glucose reabsorption and cellular glucocorticoid activation, and activators of cellular energy production.
Resumo:
Depending on age, duration of diabetes and glycaemic control, 20-40% of patients with type 2 diabetes will incur a moderate or severe deterioration of renal function. This will impact the choice of blood glucose-lowering therapy and require more frequent monitoring of both renal function and glycaemic control. Moderate renal impairment (glomerular filtration rate 30-<60 ml/min) requires consideration of dose reduction or treatment cessation for metformin, glucagon-like peptide-1 receptor agonists, some sulphonylureas and some dipeptidyl peptidase-4 inhibitors. At lower rates of glomerular filtration down to about 15 ml/min it may be appropriate to use a meglitinide, pioglitazone or certain sulphonylureas with careful consideration of dose and co-morbidities. Dipeptidyl peptidase-4 inhibitors can be used at reduced dose in patients with very low rates of glomerular filtration, and linagliptin can be used without dose reduction, and has been used in patients on dialysis. Insulin can be used at any stage of renal impairment, but the regimen and the dose must be suitably adjusted and accompanied by adequate monitoring. © The Author(s), 2012.
Resumo:
Glucagon-like peptide-1 (GLP-1) receptor agonists improve islet function and delay gastric emptying in patients with type 2 diabetes mellitus (T2DM). This meta-analysis aimed to investigate the effects of the once-daily prandial GLP-1 receptor agonist lixisenatide on postprandial plasma glucose (PPG), glucagon and insulin levels. Methods: Six randomized, placebo-controlled studies of lixisenatide 20μg once daily were included in this analysis: lixisenatide as monotherapy (GetGoal-Mono), as add-on to oral antidiabetic drugs (OADs; GetGoal-M, GetGoal-S) or in combination with basal insulin (GetGoal-L, GetGoal-Duo-1 and GetGoal-L-Asia). Change in 2-h PPG and glucose excursion were evaluated across six studies. Change in 2-h glucagon and postprandial insulin were evaluated across two studies. A meta-analysis was performed on least square (LS) mean estimates obtained from analysis of covariance (ANCOVA)-based linear regression. Results: Lixisenatide significantly reduced 2-h PPG from baseline (LS mean difference vs. placebo: -4.9mmol/l, p<0.001) and glucose excursion (LS mean difference vs. placebo: -4.5mmol/l, p<0.001). As measured in two studies, lixisenatide also reduced postprandial glucagon (LS mean difference vs. placebo: -19.0ng/l, p<0.001) and insulin (LS mean difference vs. placebo: -64.8 pmol/l, p<0.001). There was a stronger correlation between 2-h postprandial glucagon and 2-h PPG with lixisenatide than with placebo. Conclusions: Lixisenatide significantly reduced 2-h PPG and glucose excursion together with a marked reduction in postprandial glucagon and insulin; thus, lixisenatide appears to have biological effects on blood glucose that are independent of increased insulin secretion. These effects may be, in part, attributed to reduced glucagon secretion. © 2014 John Wiley and Sons Ltd.
Resumo:
Oral therapy for type 2 diabetes mellitus, when used appropriately, can safely assist patients to achieve glycaemic targets in the short to medium term. However, the progressive nature of type 2 diabetes usually requires a combination of two or more oral agents in the longer term, often as a prelude to insulin therapy. Issues of safety and tolerability, notably weight gain, often limit the optimal application of anti-diabetic drugs such as sulforylureas and thiazolidinediones. Moreover, the impact of different drugs, even within a single class, on the risk of long-term vascular complications has come under scrutiny. For example, recent publication of evidence suggesting potential detrimental effects of rosiglitazone on myocardial events generated a heated debate and led to a reduction in use of this drug. In contrast, current evidence supports the view that pioglitazone has vasculoprotective properties. Both drugs are contraindicated in patients who are at risk of heart failure. An additional recently identified safety concern is an increased risk of fractures, especially in postmenopausal women. Several new drugs with glucose-lowering efficacy that may offer certain advantages have recently become available. These include (i) injectable glucagonlike peptide-1 (GLP-1) receptor agonists and oral dipeptidyl peptidase-4 (DPP-4) inhibitors; (ii) the amylin analogue pramlintide; and (iii) selective cannabinoid receptor-1 (CB1) antagonists. GLP-1 receptor agonists, such as exenatide, stimulate nutrient-induced insulin secretion and reduce inappropriate glucagon secretion while delaying gastric emptying and reducing appetite. These agents offer a low risk of hypoglycaemia combined with sustained weight loss. The DPP-4 inhibitors sitagliptin and vildagliptin are generally weight neutral, with less marked gastrointestinal adverse effects than the GLP-1 receptor agonists. Potential benefits of GLP-1 receptor stimulation on P cell neogenesis are under investigation. Pancreatitis has been reported in exenatide-treated patients. Pramlintide, an injected peptide used in combination with insulin, can reduce insulin dose and bodyweight. The CB1 receptor antagonist rimonabant promotes weight loss and has favourable effects on aspects of the metabolic syndrome, including the hyperglycaemia of type 2 diabetes. However, in 2007 the US FDA declined approval of rimonabant, requiring more data on adverse effects, notably depression. The future of dual peroxisome proliferator-activated receptor-alpha/gamma agonists, or glitazars, is presently uncertain following concerns about their safety. In conclusion, several new classes of drugs have recently become available in some countries that offer new options for treating type 2 diabetes. Beneficial or neutral effects on bodyweight are an attractive feature of the new drugs. However, the higher cost of these agents, coupled with an absence of long-term safety and clinical outcome data, need to be taken into consideration by clinicians and healthcare organizations.
Resumo:
The structure-activity relationship optimization of the pyrazoline template 3a resulted in novel 3-oxo-1,2-diphenyl-2,3-dihydro-1H-pyrazol-4-yl)-indole carboxamides 4a-4e. These non-peptidal CCK ligands have been shown to act as potent CCK 1 ligands in a [125]I-CCK-8 receptor binding assay. The best amides (4c and 4d) of this series displayed an IC50 of 20/25 CCK 1 for the CCK 1 receptor. In a subsequent in-vivo evaluation using various behaviour pharmacological assays, an anxiolytic effect of these novel 3-oxo-1,2-diphenyl-2,3-dihydro-1H-pyrazol-4-yl)-indole carboxamides was found at high doses in the elevated plus-maze. In the despair swimming test, a model for testing antidepressants, an ED50 of 0.33/0.41 mg kg -1 was determined for amide 4c/4d and the antidepressant effect had a magnitude comparable to desimipramine. © 2006 The Authors.
Resumo:
Several pharmacotherapies have recently become available for addition to lifestyle measures to assist the management of coexistent type 2 diabetes and obesity. These are mostly administered as add-on to metformin or as alternative therapies if metformin is not appropriate. The sodium–glucose cotransporter 2 inhibitors (dapagliflozin, canagliflozin and empagliflozin) act by eliminating excess glucose in the urine. These agents provide a non-insulin-dependent mechanism to reduce hyperglycaemia and facilitate weight loss without causing frank hypoglycaemia. Their efficacy requires the individual to have adequate renal function. The glucagon-like peptide-1 (GLP-1) receptor agonists (exenatide, liraglutide, lixisenatide, dulaglutide and albiglutide [the last at the pre-launch stage at the time of writing]) are injected subcutaneously. Different members of the class offer different time courses for their onset and duration of action. Each potentiates insulin secretion and reduces glucagon secretion in a glucose-dependent manner to address prandial glycaemic excursions while avoiding interprandial hypoglycaemia. A satiety effect of these agents assists weight reduction, but delayed gastric emptying can cause initial nausea. The dipeptidyl peptidase-4 inhibitor class now comprises sitagliptin, vildagliptin, saxagliptin, linagliptin and alogliptin. These agents offer similar glucose-lowering efficacy without weight gain or hypoglycaemia by boosting the half-life of endogenous incretins, particularly GLP-1. A fixed-ratio injected combination of insulin degludec with liraglutide (IDegLira) has recently been launched and further agents to address hyperglycaemia and assist weight loss are advancing in development.
Resumo:
Background and aims: Lixisenatide, a once-daily prandial glucagon-like peptide-1 receptor agonist, reduces postprandial (PP) glycaemic excursions and HbA 1c . We report an exploratory analysis of the GetGoal-M and S trials in patients with type 2 diabetes mellitus (T2DM) with different changes in PP glucagon levels in response to lixisenatide treatment. Materials and methods: Patients (n=423) were stratified by their change in 2 hour PP glucagon level between baseline evaluation and Week 24 of treat - ment with lixisenatide as add-on to oral antidiabetics (OADs) into groups of Greater Change (GC; n=213) or Smaller Change (SC; n=210) in plasma glucagon levels (median change -23.57 ng/L). ANOVA and Chi-squared tests were used for the comparison of continuous and categorical variables, respec - tively. Baseline and endpoint continuous measurements in each group were compared using paired t -tests. Results: Mean change from baseline in 2 hour PP glucagon levels for the GC vs SC groups was -47.19 vs -0.59 ng/L (p<0.0001), respectively. Patients in the GC group had a shorter mean duration of diabetes (7.3 vs 9.0 years; p=0.0036) and lesser OAD use (4.5 vs 5.7 years; p=0.0092) than those in the SC group. Patients in the GC group had a greater mean reduction in HbA 1c (-1.10 vs -0.67%; p<0.0001), fasting plasma glucose (FPG; -25.20 vs -9.30 mg/dL [p<0.0001]), PP plasma glucose (PPG; -129.40 vs -78.22 mg/dL [p<0.0001]), and a greater drop in weight (-2.27 vs -1.17 kg; p=0.0002) and body mass index (-0.84 vs -0.44 kg/m 2 ; p=0.0002) than those in the SC group. More patients in the GC group also achieved composite endpoints, including HbA 1c <7% with no symptomatic hypoglycaemia and no weight gain (40.38 vs 19.52%; p<0.0001), than in the SC group. Conclusion: Greater reductions in PP glucagon associated with lixisenatide as add-on to OADs in patients with T2DM are also associated with greater reductions in HbA1c, FPG, PPG, and greater weight loss, highlighting the importance of glucagon suppression on therapeutic response. Clinical Trial Registration Number: NCT00712673; NCT00713830 Supported by: Sanof
Resumo:
Background and aims: Glucagon-like peptide-1 (GLP-1) receptor agonists improve islet function and delay gastric emptying in subjects with type 2 diabetes mellitus. We evaluated 2-hour glucose, glucagon and insulin changes following a standardized mixed-meal tolerance test before and after 24 weeks of treatment with the once-daily prandial GLP-1 receptor agonist lixisenatide (approved for a therapeutic dose of 20 μg once daily) in six randomized, placebo-controlled studies within the lixisenatide Phase III GetGoal programme. In the studies, the mixed-meal test was conducted before and after: (1) lixisenatide treatment in patients insufficiently controlled despite diet and exercise (GetGoal-Mono), (2) lixisenatide treatment in combination with oral antidiabetic drugs (OADs) (GetGoal-M and GetGoal-S), or (3) lixisenatide treatment in combination with basal insulin ± OAD (GetGoal-Duo 1, GetGoal-L and GetGoal-L-Asia).Materials and methods: A meta-analysis was performed (lixisenatide n=1124 vs placebo n=707) combining ANCOVA least squares (LS) mean values using an inverse variance weighted analysis. Results: Lixisenatide significantly reduced 2-hour postprandial glucose from baseline (LS mean difference vs placebo: -4.9 mmol/L, p<0.0001, Figure) and glucose excursions (LS mean difference vs placebo: -4.5 mmol/L, p<0.0001). As measured in two studies, lixisenatide also reduced postprandial glucagon (LS mean difference vs placebo: -19.0 ng/L, p<0.0001) and insulin (LS mean difference vs placebo: -64.8 pmol/L, p<0.0001), although the glucagon/insulin ratio was increased (LS mean difference vs placebo: 0.15, p=0.02) compared with placebo. Conclusion: The results show that lixisenatide potently reduces the glucose excursion after meal ingestion in subjects with type 2 diabetes, in association with marked reductions in glucagon and insulin levels. It is suggested that diminished glucagon secretion and slower gastric emptying contribute to reduced hepatic glucose production and delayed glucose absorption, enabling postprandial glycaemia to be controlled with less demand on beta-cell insulin secretion. Clinical Trial Registration Number: NCT00688701; NCT00712673; NCT00713830; NCT00975286; NCT00715624; NCT00866658 Supported by: Sanofi