948 resultados para Neural algorithm
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology, Computational Biology.
Resumo:
Diffusion Kurtosis Imaging (DKI) is a fairly new magnetic resonance imag-ing (MRI) technique that tackles the non-gaussian motion of water in biological tissues by taking into account the restrictions imposed by tissue microstructure, which are not considered in Diffusion Tensor Imaging (DTI), where the water diffusion is considered purely gaussian. As a result DKI provides more accurate information on biological structures and is able to detect important abnormalities which are not visible in standard DTI analysis. This work regards the development of a tool for DKI computation to be implemented as an OsiriX plugin. Thus, as OsiriX runs under Mac OS X, the pro-gram is written in Objective-C and also makes use of Apple’s Cocoa framework. The whole program is developed in the Xcode integrated development environ-ment (IDE). The plugin implements a fast heuristic constrained linear least squares al-gorithm (CLLS-H) for estimating the diffusion and kurtosis tensors, and offers the user the possibility to choose which maps are to be generated for not only standard DTI quantities such as Mean Diffusion (MD), Radial Diffusion (RD), Axial Diffusion (AD) and Fractional Anisotropy (FA), but also DKI metrics, Mean Kurtosis (MK), Radial Kurtosis (RK) and Axial Kurtosis (AK).The plugin was subjected to both a qualitative and a semi-quantitative analysis which yielded convincing results. A more accurate validation pro-cess is still being developed, after which, and with some few minor adjust-ments the plugin shall become a valid option for DKI computation
Resumo:
INTRODUÇÃO: A malária é uma doença endêmica na Amazônia Legal Brasileira, apresentando riscos diferentes para cada região. O Município de Cantá, no Estado de Roraima, apresentou para todo o período estudado, um dos maiores índices parasitários anuais do Brasil, com valor sempre maior que 50. O presente estudo visa à utilização de uma rede neural artificial para previsão da incidência da malária nesse município, a fim de auxiliar os coordenadores de saúde no planejamento e gestão dos recursos. MÉTODOS: Os dados foram coletados no site do Ministério da Saúde, SIVEP - Malária entre 2003 e 2009. Estruturou-se uma rede neural artificial com três neurônios na camada de entrada, duas camadas intermediárias e uma camada de saída com um neurônio. A função de ativação foi à sigmoide. No treinamento, utilizou-se o método backpropagation, com taxa de aprendizado de 0,05 e momentum 0,01. O critério de parada foi atingir 20.000 ciclos ou uma meta de 0,001. Os dados de 2003 a 2008 foram utilizados para treinamento e validação. Comparam-se os resultados com os de um modelo de regressão logística. RESULTADOS: Os resultados para todos os períodos previstos mostraram-se que as redes neurais artificiais obtiveram um menor erro quadrático médio e erro absoluto quando comparado com o modelo de regressão para o ano de 2009. CONCLUSÕES: A rede neural artificial se mostrou adequada para um sistema de previsão de malária no município estudado, determinando com pequenos erros absolutos os valores preditivos, quando comparados ao modelo de regressão logística e aos valores reais.
Resumo:
In the last few years, we have observed an exponential increasing of the information systems, and parking information is one more example of them. The needs of obtaining reliable and updated information of parking slots availability are very important in the goal of traffic reduction. Also parking slot prediction is a new topic that has already started to be applied. San Francisco in America and Santander in Spain are examples of such projects carried out to obtain this kind of information. The aim of this thesis is the study and evaluation of methodologies for parking slot prediction and the integration in a web application, where all kind of users will be able to know the current parking status and also future status according to parking model predictions. The source of the data is ancillary in this work but it needs to be understood anyway to understand the parking behaviour. Actually, there are many modelling techniques used for this purpose such as time series analysis, decision trees, neural networks and clustering. In this work, the author explains the best techniques at this work, analyzes the result and points out the advantages and disadvantages of each one. The model will learn the periodic and seasonal patterns of the parking status behaviour, and with this knowledge it can predict future status values given a date. The data used comes from the Smart Park Ontinyent and it is about parking occupancy status together with timestamps and it is stored in a database. After data acquisition, data analysis and pre-processing was needed for model implementations. The first test done was with the boosting ensemble classifier, employed over a set of decision trees, created with C5.0 algorithm from a set of training samples, to assign a prediction value to each object. In addition to the predictions, this work has got measurements error that indicates the reliability of the outcome predictions being correct. The second test was done using the function fitting seasonal exponential smoothing tbats model. Finally as the last test, it has been tried a model that is actually a combination of the previous two models, just to see the result of this combination. The results were quite good for all of them, having error averages of 6.2, 6.6 and 5.4 in vacancies predictions for the three models respectively. This means from a parking of 47 places a 10% average error in parking slot predictions. This result could be even better with longer data available. In order to make this kind of information visible and reachable from everyone having a device with internet connection, a web application was made for this purpose. Beside the data displaying, this application also offers different functions to improve the task of searching for parking. The new functions, apart from parking prediction, were: - Park distances from user location. It provides all the distances to user current location to the different parks in the city. - Geocoding. The service for matching a literal description or an address to a concrete location. - Geolocation. The service for positioning the user. - Parking list panel. This is not a service neither a function, is just a better visualization and better handling of the information.
Resumo:
Understanding how the brain works will require tools capable of measuring neuron elec-trical activity at a network scale. However, considerable progress is still necessary to reliably increase the number of neurons that are recorded and identified simultaneously with existing mi-croelectrode arrays. This project aims to evaluate how different materials can modify the effi-ciency of signal transfer from the neural tissue to the electrode. Therefore, various coating materials (gold, PEDOT, tungsten oxide and carbon nano-tubes) are characterized in terms of their underlying electrochemical processes and recording ef-ficacy. Iridium electrodes (177-706 μm2) are coated using galvanostatic deposition under different charge densities. By performing electrochemical impedance spectroscopy in phosphate buffered saline it is determined that the impedance modulus at 1 kHz depends on the coating material and decreased up to a maximum of two orders of magnitude for PEDOT (from 1 MΩ to 25 kΩ). The electrodes are furthermore characterized by cyclic voltammetry showing that charge storage capacity is im-proved by one order of magnitude reaching a maximum of 84.1 mC/cm2 for the PEDOT: gold nanoparticles composite (38 times the capacity of the pristine). Neural recording of spontaneous activity within the cortex was performed in anesthetized rodents to evaluate electrode coating performance.
Resumo:
INTRODUCTION: This study aimed to evaluate the effect of the neural mobilization technique on electromyography function, disability degree, and pain in patients with leprosy. METHODS: A sample of 56 individuals with leprosy was randomized into an experimental group, composed of 29 individuals undergoing treatment with neural mobilization, and a control group of 27 individuals who underwent conventional treatment. In both groups, the lesions in the lower limbs were treated. In the treatment with neural mobilization, the procedure used was mobilization of the lumbosacral roots and sciatic nerve biased to the peroneal nerve that innervates the anterior tibial muscle, which was evaluated in the electromyography. RESULTS: Analysis of the electromyography function showed a significant increase (p<0.05) in the experimental group in both the right (Δ%=22.1, p=0.013) and the left anterior tibial muscles (Δ%=27.7, p=0.009), compared with the control group pre- and post-test. Analysis of the strength both in the movement of horizontal extension (Δ%right=11.7, p=0.003/Δ%left=27.4, p=0.002) and in the movement of back flexion (Δ%right=31.1; p=0.000/Δ%left=34.7, p=0.000) showed a significant increase (p<0.05) in both the right and the left segments when comparing the experimental group pre- and post-test. The experimental group showed a significant reduction (p=0.000) in pain perception and disability degree when the pre- and post-test were compared and when compared with the control group in the post-test. CONCLUSIONS: Leprosy patients undergoing the technique of neural mobilization had an improvement in electromyography function and muscle strength, reducing disability degree and pain.
Resumo:
Introduction Leprosy is a chronic infectious disease that is caused by Mycobacterium leprae. The objective of this study was to evaluate the risk factors that are associated with neural alterations and physical disabilities in leprosy patients at the time of diagnosis. Methods A prospective cross-sectional study was conducted on 155 leprosy patients who participated in a program that aimed to eliminate leprosy from São Luis, State of Maranhão. Results Patients who were 31-45 years of age, were older than 60 years of age or had a partner were more likely to have a disability. Patients with partners were 1.14 times more likely (p = 0.025) to have disabilities of the hands. The frequency of disabilities in the feet among the patients with different clinical forms of leprosy was statistically significant. Conclusions The identification of risk factors that are associated with neural alterations and physical disabilities in leprosy patients is important for diagnosing the disease because this approach enables physicians to plan and prioritize actions for the treatment and monitoring of patients.
Resumo:
The aim of this work project is to analyze the current algorithm used by EDP to estimate their clients’ electrical energy consumptions, create a new algorithm and compare the advantages and disadvantages of both. This new algorithm is different from the current one as it incorporates some effects from temperature variations. The results of the comparison show that this new algorithm with temperature variables performed better than the same algorithm without temperature variables, although there is still potential for further improvements of the current algorithm, if the prediction model is estimated using a sample of daily data, which is the case of the current EDP algorithm.
Resumo:
Contém resumo
Resumo:
Ship tracking systems allow Maritime Organizations that are concerned with the Safety at Sea to obtain information on the current location and route of merchant vessels. Thanks to Space technology in recent years the geographical coverage of the ship tracking platforms has increased significantly, from radar based near-shore traffic monitoring towards a worldwide picture of the maritime traffic situation. The long-range tracking systems currently in operations allow the storage of ship position data over many years: a valuable source of knowledge about the shipping routes between different ocean regions. The outcome of this Master project is a software prototype for the estimation of the most operated shipping route between any two geographical locations. The analysis is based on the historical ship positions acquired with long-range tracking systems. The proposed approach makes use of a Genetic Algorithm applied on a training set of relevant ship positions extracted from the long-term storage tracking database of the European Maritime Safety Agency (EMSA). The analysis of some representative shipping routes is presented and the quality of the results and their operational applications are assessed by a Maritime Safety expert.
Resumo:
The present paper reports the precipitation process of Al3Sc structures in an aluminum scandium alloy, which has been simulated with a synchronous parallel kinetic Monte Carlo (spkMC) algorithm. The spkMC implementation is based on the vacancy diffusion mechanism. To filter the raw data generated by the spkMC simulations, the density-based clustering with noise (DBSCAN) method has been employed. spkMC and DBSCAN algorithms were implemented in the C language and using MPI library. The simulations were conducted in the SeARCH cluster located at the University of Minho. The Al3Sc precipitation was successfully simulated at the atomistic scale with the spkMC. DBSCAN proved to be a valuable aid to identify the precipitates by performing a cluster analysis of the simulation results. The achieved simulations results are in good agreement with those reported in the literature under sequential kinetic Monte Carlo simulations (kMC). The parallel implementation of kMC has provided a 4x speedup over the sequential version.
Resumo:
Although the impact of early adverse experience on neural processing of face familiarity has been studied, research has not taken into account disordered child behavior. This work compared the neural processing of familiar versus strangers' faces in 47 institutionalized children with a mean age of 54 months to determine the effects of (a) the presence versus absence of atypical social behavior and (b) inhibited versus indiscriminant atypical behavior. Results revealed a pattern of cortical hypoactivation in institutionalized children manifesting atypical social behavior and that inhibited children displayed larger neural response to a caregiver's face than to the stranger's, while indiscriminant children did not discriminate between stimuli. These findings suggest that neural correlates of face familiarity are associated with social functioning in institutionalized children.
Resumo:
Schizophrenia stands for a long-lasting state of mental uncertainty that may bring to an end the relation among behavior, thought, and emotion; that is, it may lead to unreliable perception, not suitable actions and feelings, and a sense of mental fragmentation. Indeed, its diagnosis is done over a large period of time; continuos signs of the disturbance persist for at least 6 (six) months. Once detected, the psychiatrist diagnosis is made through the clinical interview and a series of psychic tests, addressed mainly to avoid the diagnosis of other mental states or diseases. Undeniably, the main problem with identifying schizophrenia is the difficulty to distinguish its symptoms from those associated to different untidiness or roles. Therefore, this work will focus on the development of a diagnostic support system, in terms of its knowledge representation and reasoning procedures, based on a blended of Logic Programming and Artificial Neural Networks approaches to computing, taking advantage of a novel approach to knowledge representation and reasoning, which aims to solve the problems associated in the handling (i.e., to stand for and reason) of defective information.