760 resultados para Nanostructured polymer
Resumo:
New types of polymer electrolytes based on agar have been prepared and characterized by impedance spectroscopy, X-ray diffraction measurements, UV-vis spectroscopy and scanning electronic microscopy (SEMI). The best ionic conductivity has been obtained for the samples containing a concentration of 50 wt.% of acetic acid. As a function of the temperature the ionic conductivity exhibits an Arrhenius behavior increasing from 1.1 x 10(-4) S/cm at room temperature to 9.6 x 10(-4) S/cm at 80 degrees C. All the samples showed more than 70% of transparency in the visible region of the electromagnetic spectrum, a very homogeneous surface and a predominantly amorphous structure. All these characteristics imply that these polymer electrolytes can be applied in electrochromic devices. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Gelatin is a cheap and abundant natural product with very good biodegradation properties and can be used to obtain acetic acid or LiClO(4)-based gel polymer electrolytes (GPEs) with high ionic conductivity and good stability. This article presents results of GPEs obtained by the plasticization of gelatin and addition of LiBF(4), where the optimization of the system was achieved by using a factorial design type 22 with two variables: glycerol and LiBF(4). From this analysis it was stated that the effect of glycerol as a plasticizer on the ionic conductivity results is much more important than the effect obtained by varying the lithium salt content or the effect of the interaction of both variables. Also all the samples were characterized by X-ray diffraction measurements, UV-vis-NIR spectroscopy and scanning electron microscopy (SEM) and impedance spectroscopy. The ionic conductivity results of all analyzed samples as a function of temperature obey predominantly an Arrhenius relationship and the samples are stable up to 160 degrees C. Good conductivity results combined with transparency and good adhesion to the electrodes have shown that gelatin-based GPEs are very promising materials to be used as solid electrolytes in electrochromic devices. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This study presents the preparation, characterization and application of copper octa(3-aminopropyl)octasilsesquioxane following its subsequent reaction with azide ions (ASCA). The precursor (AC) and the novel compound (ASCA) were characterized by Fourier transform infrared spectra (FTIR), nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), scanning electronic microscopy (SEM), X-ray diffraction (XRD), Thermogravimetric analyses and voltammetric technique. The cyclic voltammogram of the modified graphite paste electrode with ASCA (GPE-ASCA), showed one redox couple with formal potential (E(1/2)(ox)) = 0.30 V and an irreversible process at 1.1 V (vs. Ag/AgCl; NaCl 1.0 M; v = 20 mV s(-1)). The material is very sensitive to nitrite concentrations. The modified graphite paste electrode (GPE-ASCA) gives a linear range from 1.0 x 10(-4) to 4.0 x 10(-3) mol L(-1) for the determination of nitrite, with a detection limit of 2.1 x 10(-4) mol L(-1) and the amperometric sensitivity of 8.04 mA/mol L(-1). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The electrical characterization of a high efficient multilayer polymer light emitting diode using poly[(2-methoxy-5-hexyloxy)-p-phenylenevinylene] as the emissive layer and an anionic fluorinated surfactant as the electron transport layer was performed. For the sake of comparison, a conventional single layer device was fabricated. The density current vs. voltage measurements revealed that the conventional device has a higher threshold voltage and lower current compared to the surfactant modified device. The effective barrier height for electron injection was suppressed. The influence of the interfaces and bulk contributions to the dc and high frequencies conductivities of the devices was also discussed. (c) 2006 Springer Science + Business Media, Inc.
Effect of ion concentration of ionomer in electron injection layer of polymer light-emitting devices
Resumo:
Polymer light-emitting devices (PLEDs) with poly(2-methoxy-5-hexyloxy)-p-phenylenevinylene (OC1OC6-PPV) as the emissive layer were studied with an electron injection layer of ionomers consisting of copolymers of styrene and methylmethacrylate (PS/PMMA) with 3, 6 and 8 mol% degree of sulfonation. The ionomers were able to form very thin films over the emissive layer, with less than 30 nm. Additionally, the presence of ion pairs of ionomer suppresses the tendency toward dewetting of the thin film of ionomer (similar to 10 nm) which can cause malfunction of the device. The effect of the ionomers was investigated as a function of the ion content. The devices performance, characterized by their current density and luminance intensity versus voltage, showed a remarkable increase with the ionomer layer up to 6 mol% of ionic groups, decreasing after that for the 8 mol% ionomer device. The study of the impedance spectroscopy in the frequency range from 0.1 to 10(6) Hz showed that the injection phenomena dominate over the transport in the electroluminescent polymer bulk. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Polymer light-emitting devices (PLEDs) have been produced with Langmuir-Blodgett (LB) films from poly(2-methoxy-5-hexyloxy)-p-phenylenevinylene (OC1OC6-PPV) as the emissive layer and an ionomer of a copolymer of styrene and methylmethacrylate (PS/PMMA) as an electron-injection layer. The main features of such devices are the low operating voltages, obtainable firstly due to the good quality of the ultrathin LB films that allows PLEDs to be produced reproducibly and secondly due to the improved electrical and luminance properties brought by the electron-injection layer. Also demonstrated is the superior performance of an all-LB device compared to another one produced with cast films of the same materials. Published by Elsevier B.V.
Resumo:
Chemical sensors made from nanostructured films of poly(o-ethoxyaniline) POEA and poly(sodium 4-styrene sulfonate) PSS are produced and used to detect and distinguish 4 chemicals in solution at 20 mM, including sucrose, NaCl, HCl, and caffeine. These substances are used in order to mimic the 4 basic tastes recognized by humans, namely sweet, salty, sour, and bitter, respectively. The sensors are produced by the deposition of POEA/PSS films at the top of interdigitated microelectrodes via the layer-by-layer technique, using POEA solutions containing different dopant acids. Besides the different characteristics of the POEA/PSS films investigated by UV-Vis and Raman spectroscopies, and by atomic force microscopy.. it is observed that their electrical response to the different chemicals in liquid media is very fast, in the order of seconds, systematical, reproducible, and extremely dependent on the type of acid used for film fabrication. The responses of the as-prepared sensors are reproducible and repetitive after many cycles of operation. Furthermore, the use of an "electronic tongue" composed by an array of these sensors and principal component analysis as pattern recognition tool allows one to reasonably distinguish test solutions according to their chemical composition. (c) 2007 Published by Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An increase of the reports involving mimetic systems has been observed. Briefly, these systems use biological phospholipids to exploit specific interactions between membrane-models and drugs. Here, the Layer-by-Layer (LbL) and Langmuir techniques were used to investigate the interaction between cardiolipin (CLP-negative phospholipid) and a cationic-like drug methylene blue (MB). Supported by a cationic polyelectrolyte (PAH), LbL films containing PAH/(CLP + MB) and PAH/(CLP + MB + AgNP) were grown up to 14 bilayers. The optical microscopy analysis revealed a decrease of the CLP vesicle sizes in the presence of MB as a possible consequence of the MB action onto the mechanical properties of the CLP membrane. From FTIR spectra, changes mainly related to peak position and band intensity and shape were observed in the spectra from PAH/CLP when in the presence of MB. The latter supports that the interactions between the phosphate and amine charged groups from CLP and PAH, respectively, established during the LbL film fabrication, besides the CLP hydrocarbon environment, are influenced by the presence of MB. Using the micro-Raman technique, a chemical mapping was build based on MB spectrum by resonance Raman scattering (RRS) and surface-enhanced resonance Raman scattering (SERRS). The later phenomenon was activated by Ag nanoparticles (AgNPs) trapped within the LbL film allowing collecting spectra for a single bilayer of PAH/(CLP + MB + AgNP). A rough estimation showed a SERRS amplification of 10(3) in comparison to RRS spectra. As a complementary approach, Langmuir films of CLP in the presence of co-spread MB were investigated through surface pressure vs mean molecular area (pi-A) isotherms. The results showed that for concentrations of MB below 100 mol%, the drug is expelled to water subphase for high values of surface pressure (condensed phase). For concentration at 100% and higher, the MB keeps bound to CLP floating monolayer. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)