952 resultados para Nano Zinc Oxide


Relevância:

30.00% 30.00%

Publicador:

Resumo:

in the present study, we have prepared and evaluated the physical and chemical properties and catalytic activities of transition metal loaded sulfated titania via the sol-gel route. Sol-gel method is widely used for preparing porous materials having controlled properties and leads to the formation of oxide particles in nano range, which are spherical or interconnected to each other. Characterization using various physico-chemical techniques and a detailed study of acidic properties are also carried out. Some reactions of industrial importance such as Friedel-Crafts reaction, fen-butylation of phenol,Beckmann rearrangement of cyclohexanone oxime, nitration of phenol and photochemical degradation of methylene blue have been selected for catalytic activity study in the present venture. The work is organized into eight chapters

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The creation of three-dimensionally engineered nanoporous architectures via covalently interconnected nanoscale building blocks remains one of the fundamental challenges in nanotechnology. Here we report the synthesis of ordered, stacked macroscopic three-dimensional (3D) solid scaffolds of graphene oxide (GO) fabricated via chemical cross-linking of two-dimensional GO building blocks. The resulting 3D GO network solids form highly porous interconnected structures, and the controlled reduction of these structures leads to formation of 3D conductive graphene scaffolds. These 3D architectures show promise for potential applications such as gas storage; CO2 gas adsorption measurements carried out under ambient conditions show high sorption capacity, demonstrating the possibility of creating new functional carbon solids starting with two-dimensional carbon layers

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano magnetic oxides are promising candidates for high density magnetic storage and other applications. Nonspherical mesoscopic iron oxide particles are also candidate materials for studying the shape, size and strain induced modifications of various physical properties viz. optical, magnetic and structural. Spherical and nonspherical iron oxides having an aspect ratio, ~2, are synthesized by employing starch and ethylene glycol and starch and water, respectively by a novel technique. Their optical, structural, thermal and magnetic properties are evaluated. A red shift of 0⋅24 eV is observed in the case of nonspherical particles when compared to spherical ones. The red shift is attributed to strain induced changes in internal pressure inside the elongated iron oxide particles. Pressure induced effects are due to the increased overlap of wave functions. Magnetic measurements reveal that particles are superparamagnetic. The marked increase in coercivity in the case of elongated particles is a clear evidence for shape induced anisotropy. The decreased specific saturation magnetization of the samples is explained on the basis of weight percentage of starch, a nonmagnetic component and is verified by TGA and FTIR studies. This technique can be modified for tailoring the aspect ratio and these particles are promising candidates for drug delivery and contrast enhancement agents in magnetic resonance imaging

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multimodal imaging agents that combine magnetic and fluorescent imaging capabilities are desirable for the high spatial and temporal resolution. In the present work, we report the synthesis of multifunctional fluorescent ferrofluids using iron oxide as the magnetic core and rhodamine B as fluorochrome shell. The core–shell structure was designed in such a way that fluorescence quenching due to the inner magnetic core was minimized by an intermediate layer of silica. The intermediate passive layer of silica was realized by a novel method which involves the esterification reaction between the epoxy group of prehydrolysed 3-Glyidoxypropyltrimethoxysilane and the surfactant over iron oxide. The as-synthesized ferrofluids have a high saturation magnetization in the range of 62–65 emu/g and were found to emit light of wavelength 640 nm ( excitation = 446 nm). Time resolved life time decay analysis showed a bi-exponential decay pattern with an increase in the decay life time in the presence of intermediate silica layer. Cytotoxicity studies confirmed the cell viability of these materials. The in vitro MRI imaging illustrated a high contrast when these multimodal nano probes were employed and the R2 relaxivity of these ∗Author to whom correspondence should be addressed. Email: smissmis@gmail.com sample was found to be 334 mM−1s−1 which reveals its high potential as a T2 contrast enhancing agent

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zinc protoporphyrin IX (ZnPP), the major red pigment in hams dry-cured without nitrates/nitrites, is an efficient photosensitizer, which upon absorption of visible light forms short-lived excited singlet state ((1)ZnPP*) and by intersystem crossing yields the very reactive triplet-excited state ((3)ZnPP*). Using nano-second laser flash photolysis and transient absorption spectroscopy NADH, ascorbic acid, hemin and dehydroascorbic acid were each found to be efficient quenchers of (3)ZnPP*. The deactivation followed, in homogeneous dimethyl sulfoxide (DMSO) or DMSO:water (1:1) solutions, second-order kinetics. The rate constant for ascorbic acid and NADH for reductive quenching of (3)ZnPP* was at 25 A degrees C found to be 7.5 +/- A 0.1 x 10(4) L mol(-1) s(-1) and 6.3 +/- A 0.1 x 10(5) L mol(-1) s(-1), respectively. The polyphenols catechin and quercetin had no effect on (3)ZnPP*. The quenching rate constant for oxidative deactivation of (3)ZnPP* by dehydroascorbic acid and hemin was at 25 A degrees C: 1.6 +/- A 0.1 x 10(5) L mol(-1) s(-1) and 1.47 +/- A 0.1 x 10(9) L mol(-1) s(-1), respectively. Oxidized glutathione did not act as an oxidative quencher for (3)ZnPP*. After photoexcitation of ZnPP to (1)ZnPP*, fluorescence was only found to be quenched by the presence of hemin in a diffusion-controlled reaction. The efficient deactivation of (3)ZnPP* and (1)ZnPP* by the metalloporphyrin (hemin) naturally present in meat may accordingly inherently protect meat proteins and lipids against ZnPP photosensitized oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Superparamagnetic iron oxide nanoparticles (SPIONs) are applied in stem cell labeling because of their high magnetic susceptibility as compared with ordinary paramagnetic species, their low toxicity, and their ease of magnetic manipulation. The present work is the study of CD133(+) stem cell labeling by SPIONs coupled to a specific antibody (AC133), resulting in the antigenic labeling of the CD133+ stem cell, and a method was developed for the quantification of the SPION content per cell, necessary for molecular imaging optimization. Flow cytometry analysis established the efficiency of the selection process and helped determine that the CD133 cells selected by chromatographic affinity express the transmembrane glycoprotein CD133. The presence of antibodies coupled to the SPION, expressed in the cell membrane, was observed by transmission electron microscopy. Quantification of the SPION concentration in the marked cells using the ferromagnetic resonance technique resulted in a value of 1.70 x 10 (13) mol iron (9.5 pg) or 7.0 x 10 (6) nanoparticles per cell ( the measurement was carried out in a volume of 2 mu L containing about 6.16 x 10 5 pg iron, equivalent to 4.5 x 10 (11) SPIONs). (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to characterize and to evaluate the bioactivity potential of experimental root canal sealers (ES) based on Portland cement, epoxy resin with nano- and micro-particles of niobium or zirconium oxide used as radiopacifiers in comparison to AH Plus and MTA Fillapex. Methods Specimens of the sealers (10 mm in diameter × 1 mm thick) were prepared and the radiopacity was evaluated according to ISO 6876 (2012) specifications. Characterization of the sealers was performed under the scanning electron microscope (SEM) immediately after setting and after immersion for 28 days in Hank's balanced salt solution (HBSS). In addition X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy were also performed. The pH and calcium ion release were measured after 1, 7, 14, 21 and 28 days after completion of seating using a digital pH meter and an atomic absorption spectrophotometer, respectively. Results The experimental sealers exhibited an average radiopacity of 2.5 mm thickness of aluminum, which was similar to MTA Fillapex (P > 0.05) and inferior to AH Plus (P < 0.05). AH Plus did not show bioactivity. Although the experimental sealers did not exhibit the formation of hydration product, they encouraged the deposition of crystalline spherical structures of calcium deficient phosphate. The highest pH and calcium release values were observed with the experimental sealers (P < 0.01). ES-Nb-micro was the only sealer to present hexagonal shaped crystal deposition. Significance Novel root canal sealers based on a mixture of Portland cement, epoxy resin and radiopacifier exhibited a degree of bioactivity although no evidence of cement hydration was demonstrated on material characterization. The radiopacifier particle size had limited effect on the sealer microstructure and chemical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano- (30-60 nm) and submicron (100-350 nm) ZnO particles were synthesized using solvothermal method at 200 degrees C from an ethanolic solution of zinc acetate dihydrate, applying different reaction conditions, i.e., pH value of precursor and time of the reaction. The X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance (DR), Raman spectroscopy, and photoluminescence (PL) spectroscopy have been employed for characterization of synthesized ZnO powders. It was shown that the structural, morphological, and optical properties are largely determined by reaction conditions during solvothermal synthesis. The particle crystallinity improves with the decrease of pH value and/or the increase of time of the reaction. The Raman and PL spectra analyses indicate that the oxygen interstitials are dominant intrinsic defects in solvothermally synthesized ZnO powders. It was observed that concentration of defects in wurtzite ZnO crystal lattices slightly changes with the variation of pH value of the precursor and time of the solvothermal reaction. The correlation between structural ordering and defect structure of particles and corresponding growth processes was discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-phase polycrystalline mixed nickel-zinc ferrites belonging to Ni0.5Zn0.5Fe2O4 were prepared on a nanometric scale (mean crystallite size equal to 14.7 nm) by chemical synthesis named the modified poliol method. Ferrite nanopowder was then incorporated into a natural rubber matrix producing nanocomposites. The samples were investigated by means of infrared spectroscopy, X-ray diffraction, scanning electron microscopy and magnetic measurements. The obtained results suggest that the base concentration of nickel-zinc ferrite nanoparticles inside the polymer matrix volume greatly influences the magnetic properties of nanoconnposites. A small quantity of nanoparticles, less than 10 phr, in the nanocomposite is sufficient to produce a small alteration in the semi-crystallinity of nanocomposites observed by X-ray diffraction analysis and it produces a flexible magnetic composite material with a saturation magnetization, a coercivity field and an initial magnetic permeability equal to 3.08 emu/g, 99.22 Oe and 9.42 X 10(-5) respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene and graphenic derivatives have rapidly emerged as an extremely promising system for electronic, optical, thermal, and electromechanical applications. Several approaches have been developed to produce these materials (i.e. scotch tape, CVD, chemical and solvent exfoliation). In this work we report a chemical approach to produce graphene by reducing graphene oxide (GO) via thermal or electrical methods. A morphological and electrical characterization of these systems has been performed using different techniques such as SPM, SEM, TEM, Raman and XPS. Moreover, we studied the interaction between graphene derivates and organic molecules focusing on the following aspects: - improvement of optical contrast of graphene on different substrates for rapid monolayer identification1 - supramolecular interaction with organic molecules (i.e. thiophene, pyrene etc.)4 - covalent functionalization with optically active molecules2 - preparation and characterization of organic/graphene Field Effect Transistors3-5 Graphene chemistry can potentially allow seamless integration of graphene technology in organic electronics devices to improve device performance and develop new applications for graphene-based materials. [1] E. Treossi, M. Melucci, A. Liscio, M. Gazzano, P. Samorì, and V. Palermo, J. Am. Chem. Soc., 2009, 131, 15576. [2] M. Melucci, E. Treossi, L. Ortolani, G. Giambastiani, V. Morandi, P. Klar, C. Casiraghi, P. Samorì, and V. Palermo, J. Mater. Chem., 2010, 20, 9052. [3] J.M. Mativetsky, E. Treossi, E. Orgiu, M. Melucci, G.P. Veronese, P. Samorì, and V. Palermo, J. Am. Chem. Soc., 2010, 132, 14130. [4] A. Liscio, G.P. Veronese, E. Treossi, F. Suriano, F. Rossella, V. Bellani, R. Rizzoli, P. Samorì and V. Palermo, J. Mater. Chem., 2011, 21, 2924. [5] J.M. Mativetsky, A. Liscio, E. Treossi, E. Orgiu, A. Zanelli, P. Samorì , V. Palermo, J. Am. Chem. Soc., 2011, 133, 14320

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Chapter 1 I will present a brief introduction on the state of art of nanotechnologies, nanofabrication techniques and unconventional lithography as a technique to fabricate the novel electronic device as resistive switch so-called memristor is shown. In Chapter 2 a detailed description of the main fabrication and characterization techniques employed in this work is reported. Chapter 3 parallel local oxidation lithography (pLOx) describes as a main technique to obtain accurate patterning process. All the effective parameters has been studied and the optimized condition observed to highly reproducible with excellent patterned nanostructures. The effect of negative bias, calls local reduction (LR) studied. Moreover, the use of AC bias shows faster patterning process respect to DC bias. In Chapter 4 (metal/ e-SiO2/ Si nanojunction) it is shown how the electrochemical oxide nanostructures by using pLOx can be used in the fabrication of novel devices call memristor. We demonstrate a new concept, based on conventional materials, where the lifetime problem is resolved by introducing a “regeneration” step, which restores the nano-memristor to its pristine condition by applying an appropriate voltage cycle. In Chapter 5 (Graphene/ e-SiO2/ Si), Graphene as a building block material is used as an electrode to selectively oxidize the silicon substrate by pLOx set up for the fabrication of novel resistive switch device. In Chapter 6 (surface architecture) I will show another application of pLOx in biotechnology is shown. So the surface functionalization combine with nano-patterning by pLOx used to design a new surface to accurately bind biomolecules with the possibility of studying those properties and more application in nano-bio device fabrication. So, in order to obtain biochips, electronic and optical/photonics devices Nano patterning of DNA used as scaffolds to fabricate small functional nano-components.