995 resultados para NITROGEN-DIOXIDE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

No-tillage (NT) practice, where straw is retained on the soil surface, is increasingly being used in cereal cropping systems in Australia and elsewhere. Compared to conventional tillage (CT), where straw is mixed with the ploughed soil, NT practice may reduce straw decomposition, increase nitrogen immobilisation and increase organic carbon in the soil. This study examined 15N-labelled wheat straw (stubble) decomposition in four treatments (NT v. CT, with N rates of 0 and 75 kg/ha.year) and assessed the tillage and fertiliser N effects on mineral N and organic C and N levels over a 10-year period in a field experiment. NT practice decreased the rate of straw decomposition while fertiliser N application increased it. However, there was no tillage practice x N interaction. The mean residence time of the straw N in soil was more than twice as long under the NT (1.2 years) as compared to the CT practice (0.5 years). In comparison, differences in mean residence time due to N fertiliser treatment were small. However, tillage had generally very little effect on either the amounts of mineral N at sowing or soil organic C (and N) over the study period. While application of N fertiliser increased mineral N, it had very little effect on organic C over a 10-year period. Relatively rapid decomposition of straw and short mean residence time of straw N in a Vertisol is likely to have very little long-term effect on N immobilisation and organic C level in an annual cereal cropping system in a subtropical, semiarid environment. Thus, changing the tillage practice from CT to NT may not necessitate additional N requirement unless use is made of additional stored water in the soil or mineral N loss due to increased leaching is compensated for in N supply to crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Winter cereal cropping is marginal in south-west Queensland because of low and variable rainfall and declining soil fertility. Increasing the soil water storage and the efficiency of water and nitrogen (N) use is essential for sustainable cereal production. The effect of zero tillage and N fertiliser application on these factors was evaluated in wheat and barley from 1996 to 2001 on a grey Vertosol. Annual rainfall was above average in 1996, 1997, 1998 and 1999 and below average in 2000 and 2001. Due to drought, no crop was grown in the 2000 winter cropping season. Zero tillage improved fallow soil water storage by a mean value of 20 mm over 4 years, compared with conventional tillage. However, mean grain yield and gross margin of wheat were similar under conventional and zero tillage. Wheat grain yield and/or grain protein increased with N fertiliser application in all years, resulting in an increase in mean gross margin over 5 years from $86/ha, with no N fertiliser applied, to $250/ha, with N applied to target ≥13% grain protein. A similar increase in gross margin occurred in barley where N fertiliser was applied to target malting grade. The highest N fertiliser application rate in wheat resulted in a residual benefit to soil N supply for the following crop. This study has shown that profitable responses to N fertiliser addition in wheat and barley can be obtained on long-term cultivated Vertosols in south-west Queensland when soil water reserves at sowing are at least 60% of plant available water capacity, or rainfall during the growing season is above average. An integrative benchmark for improved N fertiliser management appears to be the gross margin/water use of ~$1/ha.mm. Greater fallow soil water storage or crop water use efficiency under zero tillage has the potential to improve winter cereal production in drier growing seasons than experienced during the period of this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For N2 on a clean Fe surface, the adsorbed precursor in a parallel orientation becomes predominant around 110 K, while at lower temperatures it coexists with a weakly adsorbed species. On a Ba-promoted Fe surface, however, N2 is present exclusively in the precursor state in the temperature range 80–150 K following moderate exposure. Besides exhibiting a low N-N stretching frequency of 1530 cm−1, the precursor shows a clear separation between the 5σ and 1π levels in the UPS; the precursor dissociates to give a nitridic species around 160 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parthenium hysterophorus L. (Asteraceae) is a weed of national significance in Australia. Among the several arthropod agents introduced into Australia to control populations of P. hysterophorus biologically, Epiblema strenuana Walker (Lepidoptera: Tortricidae) is the most widespread and abundant agent. By intercepting the normal transport mechanisms of P. hysterophorus, the larvae of E. strenuana drain nutrients, other metabolic products, and energy, and place the host plant under intense metabolic stress. In this study, determinations of total non-structural carbohydrates (TNC) levels and carbon and nitrogen isotope ratios of fixed products in different parts of the plant tissue, including the gall, have been made to establish the function of gall as a sink for the nutrients. Values of δ13C and δ15N in galls were significantly different than those in proximal and distal stems, whereas the TNC levels were insignificant, when measured in the total population of P. hysterophorus, regardless of plant age. However, carbon, nitrogen, and TNC signatures presented significant results, when assayed in different developmental stages of P. hysterophorus. Carbon isotope ratios in galls were consistently more negative than those from the compared plant organs. Nitrogen isotope ratios in galls, on the contrary, were either similar to or less negative than the compared plant organs, especially within a single host-plant stage population (i.e., either rosette, preflowering, or flowering stage). TNC levels varied within compared plant populations. The stem distal to the gall functioned more efficiently as a nodal channel than the stem proximal to the gall, especially in the translocation of nitrogenous nutrients. Our findings indicate that the gall induced by E. strenuana functions as a sink for the assayed nutrients, although some variations have been observed in the patterns of nutrient mobilization. By creating a sink for the nutrients in the gall, E. strenuana is able to place the overall plant metabolism under stress, and this ability indicates E. strenuana has the necessary potential for use as a biological-control agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maintenance of green leaf area during grain filling can increase grain yield of sorghum grown under terminal water limitation. This 'stay-green' trait has been related to the nitrogen (N) supply-demand balance during grain filling. This study quantifies the N demand of grain and N translocation rates from leaves and stem and explores effects of genotype and N stress on onset and rate of leaf senescence during the grain filling period. Three hybrids differing in potential height were grown at three levels of N supply under well-watered conditions. Vertical profiles of biomass, leaf area, and N% of leaves, stem and grain were measured at regular intervals. Weekly SPAD chlorophyll readings on main shoot leaves were correlated with observed specific leaf nitrogen (SLN) to derive seasonal patterns of leaf N content. For all hybrids, individual grain N demand was sink determined and was initially met through N translocation from the stem and rachis. Only if this was insufficient did leaf N translocation occur. Maximum N translocation rates from leaves and stem were dependent on their N status. However, the supply of N at canopy scale was also related to the amount of leaf area senescing at any one time. This supply-demand framework for N dynamics explained effects of N stress and genotype on the onset and rate of leaf senescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stay-green, an important trait for grain yield of sorghum grown under water limitation, has been associated with a high leaf nitrogen content at the start of grain filling. This study quantifies the N demand of leaves and stems and explores effects of N stress on the N balance of vegetative plant parts of three sorghum hybrids differing in potential crop height. The hybrids were grown under well-watered conditions at three levels of N supply. Vertical profiles of biomass and N% of leaves and stems, together with leaf size and number, and specific leaf nitrogen (SLN), were measured at regular intervals. The hybrids had similar minimum but different critical and maximum SLN, associated with differences in leaf size and N partitioning, the latter associated with differences in plant height. N demand of expanding new leaves was represented by critical SLN, and structural stem N demand by minimum stem N%. The fraction of N partitioned to leaf blades increased under N stress. A framework for N dynamics of leaves and stems is developed that captures effects of N stress and genotype on N partitioning and on critical and maximum SLN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface losses of nitrogen from horticulture farms in coastal Queensland, Australia, may have the potential to eutrophy sensitive coastal marine habitats nearby. A case-study of the potential extent of such losses was investigated in a coastal macadamia plantation. Nitrogen losses were quantified in 5 consecutive runoff events during the 13-month study. Irrigation did not contribute to surface flows. Runoff was generated by storms at combined intensities and durations that were 20–40 mm/h for >9 min. These intensities and durations were within expected short-term (1 year) and long-term (up to 20 years) frequencies of rainfall in the study area. Surface flow volumes were 5.3 ± 1.1% of the episodic rainfall generated by such storms. Therefore, the largest part of each rainfall event was attributed to infiltration and drainage in this farm soil (Kandosol). The estimated annual loss of total nitrogen in runoff was 0.26 kg N/ha.year, representing a minimal loading of nitrogen in surface runoff when compared to other studies. The weighted average concentrations of total sediment nitrogen (TSN) and total dissolved nitrogen (TDN) generated in the farm runoff were 2.81 ± 0.77% N and 1.11 ± 0.27 mg N/L, respectively. These concentrations were considerably greater than ambient levels in an adjoining catchment waterway. Concentrations of TSN and TDN in the waterway were 0.11 ± 0.02% N and 0.50 ± 0.09 mg N/L, respectively. The steep concentration gradient of TSN and TDN between the farm runoff and the waterway demonstrated the occurrence of nutrient loading from the farming landscapes to the waterway. The TDN levels in the stream exceeded the current specified threshold of 0.2–0.3 mg N/L for eutrophication of such a waterway. Therefore, while the estimate of annual loading of N from runoff losses was comparatively low, it was evident that the stream catchment and associated agricultural land uses were already characterised by significant nitrogen loadings that pose eutrophication risks. The reported levels of nitrogen and the proximity of such waterways (8 km) to the coastline may have also have implications for the nearshore (oligotrophic) marine environment during periods of turbulent flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preparation of a novel type of titanium-substrate lead dioxide anode with enhanced electrocatalytic activity for electrosynthesis is described. It has been demonstrated that in the presence of a suitable surfactant in the coating solution, an adherent and mainly tetragonal form of lead dioxide is deposited on a platinized titanium surface such that the solution side of the coating is porous while the substrate side is compact. By an analysis of anodic charging curves and steady-state Tafel plots with such porous electrodes in contact with sodium sulphate solution, it has been proved that the electrochemically active area of these anodes is higher by more than an order of magnitude when compared to the area of conventional titanium-substrate lead dioxide anodes. The electrocatalytic activity is also thereby enhanced to a significant degree.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics and mechanism of anodic oxidation of chlorate ion to perchlorate ion on titanium-substrate lead dioxide electrodes have been investigated experimentally and theoretically. It has been demonstrated that the ionic strength of the solution has a marked effect on the rate of perchlorate formation, whereas the pH of the solution does not influence the reaction rate. Experimental data have also been obtained on the dependence of the reaction rate on the concentration of chlorate ion in the solution at constant ionic strength. With these data, diagnostic kinetic criteria have been deduced and compared with corresponding quantities predicted for various possible mechanisms including double layer effects on electrode kinetics. It has thus been shown that the most probable mechanisms for anodic chlorate oxidation on lead dioxide anodes involve the discharge of a water molecule in a one-electron transfer step to give an adsorbed hydroxyl radical as the rate-determining step for the overall reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Varying the spatial distribution of applied nitrogen (N) fertilizer to match demand in crops has been shown to increase profits in Australia. Better matching the timing of N inputs to plant requirements has been shown to improve nitrogen use efficiency and crop yields and could reduce nitrous oxide emissions from broad acre grains. Farmers in the wheat production area of south eastern Australia are increasingly splitting N application with the second timing applied at stem elongation (Zadoks 30). Spectral indices have shown the ability to detect crop canopy N status but a robust method using a consistent calibration that functions across seasons has been lacking. One spectral index, the canopy chlorophyll content index (CCCI) designed to detect canopy N using three wavebands along the "red edge" of the spectrum was combined with the canopy nitrogen index (CNI), which was developed to normalize for crop biomass and correct for the N dilution effect of crop canopies. The CCCI-CNI index approach was applied to a 3-year study to develop a single calibration derived from a wheat crop sown in research plots near Horsham, Victoria, Australia. The index was able to predict canopy N (g m-2) from Zadoks 14-37 with an r2 of 0.97 and RMSE of 0.65 g N m-2 when dry weight biomass by area was also considered. We suggest that measures of N estimated from remote methods use N per unit area as the metric and that reference directly to canopy %N is not an appropriate method for estimating plant concentration without first accounting for the N dilution effect. This approach provides a link to crop development rather than creating a purely numerical relationship. The sole biophysical input, biomass, is challenging to quantify robustly via spectral methods. Combining remote sensing with crop modelling could provide a robust method for estimating biomass and therefore a method to estimate canopy N remotely. Future research will explore this and the use of active and passive sensor technologies for use in precision farming for targeted N management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the subtropics of Australia, the ryegrass component of irrigated perennial ryegrass (Lolium perenne) - white clover (Trifolium repens) pastures declines by approximately 40% in the summer following establishment, being replaced by summer-active C4 grasses. Tall fescue (Festuca arundinacea) is more persistent than perennial ryegrass and might resist this invasion, although tall fescue does not compete vigorously as a seedling. This series of experiments investigated the influence of ryegrass and tall fescue genotype, sowing time and sowing mixture as a means of improving tall fescue establishment and the productivity and persistence of tall fescue, ryegrass and white clover-based mixtures in a subtropical environment. Tall fescue frequency at the end of the establishment year decreased as the number of companion species sown in the mixture increased. Neither sowing mixture combinations nor sowing rates influenced overall pasture yield (of around 14 t/ha) in the establishment year but had a significant effect on botanical composition and component yields. Perennial ryegrass was less competitive than short-rotation ryegrass, increasing first-year yields of tall fescue by 40% in one experiment and by 10% in another but total yield was unaffected. The higher establishment-year yield (3.5 t/ha) allowed Dovey tall fescue to compete more successfully with the remaining pasture components than Vulcan (1.4 t/ha). Sowing 2 ryegrass cultivars in the mixture reduced tall fescue yields by 30% compared with a single ryegrass (1.6 t/ha), although tall fescue alone achieved higher yields (7.1 t/ha). Component sowing rate had little influence on composition or yield. Oversowing the ryegrass component into a 6-week-old sward of tall fescue and white clover improved tall fescue, white clover and overall yields in the establishment year by 83, 17 and 11%, respectively, but reduced ryegrass yields by 40%. The inclusion of red (T. pratense) and Persian (T. resupinatum) clovers and chicory (Cichorium intybus) increased first-year yields by 25% but suppressed perennial grass and clover components. Yields were generally maintained at around 12 t/ha/yr in the second and third years, with tall fescue becoming dominant in all 3 experiments. The lower tall fescue seeding rate used in the first experiment resulted in tall fescue dominance in the second year following establishment, whereas in Experiments 2 and 3 dominance occurred by the end of the first year. Invasion by the C4 grasses was relatively minor (<10%) even in the third year. As ryegrass plants died, tall fescue and, to a lesser extent, white clover increased as a proportion of the total sward. Treatment effects continued into the second, but rarely the third, year and mostly affected the yield of one of the components rather than total cumulative yield. Once tall fescue became dominant, it was difficult to re-introduce other pasture components, even following removal of foliage and moderate renovation. Severe renovation (reducing the tall fescue population by at least 30%) seems a possible option for redressing this situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigated the impact of organic sources of nutrients on greenhouse gas emissions (carbon dioxide, nitrous oxide and methane), nitrogen use efficiency and biomass production in subtropical cropping soils. The study was conducted in two main soil types in subtropical ecosystems, sandy loam soil and clay soil, with a variety of organic materials from agro-industrial residues and crop residues. It is important for recycling of agro-industrial residues and agricultural residues and the mitigation of greenhouse gas emissions and nitrogen use efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interest in cashew production in Australia has been stimulated by domestic and export market opportunities and suitability of large areas of tropical Australia. Economic models indicate that cashew production is profitable at 2.8 t ha-1 nut-in-shell (NIS). Balanced plant nutrition is essential to achieve economic yields in Australia, with nitrogen (N) of particular importance because of its capacity to modify growth, affect nut yield and cause environmental degradation through soil acidification and off-site contamination. The study on a commercial cashew plantation at Dimbulah, Australia, investigated the effect of N rate and timing on cashew growth, nut production, N leaching and soil chemical properties over five growth cycles (1995-1999). Nitrogen was applied during the main periods of vegetative (December-April) and reproductive (June-October) growth. Commercial NIS yields (up to 4.4 t ha-1 from individual trees) that exceeded the economic threshold of 2.8 t ha-1 were achieved. The yield response was mainly determined by canopy size as mean nut weight, panicle density and nuts per panicle were largely unaffected by N treatments. Nitrogen application confined to the main period of vegetative growth (December-April) produced a seasonal growth pattern that corresponded most consistently with highest NIS yield. This N timing also reduced late season flowering and undesirable post-November nut drop. Higher yields were not produced at N rates greater than 17 g m-2 of canopy surface area (equating to 210 kg N ha-1 for mature size trees). High yields were attained when N concentrations in Mveg leaves in May-June were about 2%, but this assessment occurs at a time when it is not feasible to correct N deficiency. The Mflor leaf of the preceding November, used in conjunction with the Mveg leaf, was proposed as a diagnostic tool to guide N rate decisions. Leaching of nitrate-N and acidification of the soil profile was recorded to 0.9 m. This is an environmental and sustainability hazard, and demonstrates that improved methods of N management are required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nitrogen-driven trade-off between nitrogen utilisation efficiency (yield per unit nitrogen uptake) and water use efficiency (yield per unit evapotranspiration) is widespread and results from well established, multiple effects of nitrogen availability on the water, carbon and nitrogen economy of crops. Here we used a crop model (APSIM) to simulate the yield, evapotranspiration, soil evaporation and nitrogen uptake of wheat, and analysed yield responses to water, nitrogen and climate using a framework analogous to the rate-duration model of determinate growth. The relationship between modelled grain yield (Y) and evapotranspiration (ET) was fitted to a linear-plateau function to derive three parameters: maximum yield (Ymax), the ET break-point when yield reaches its maximum (ET#), and the rate of yield response in the linear phase ([Delta]Y/[Delta]ET). Against this framework, we tested the hypothesis that nitrogen deficit reduces maximum yield by reducing both the rate ([Delta]Y/[Delta]ET) and the range of yield response to evapotranspiration, i.e. ET# - Es, where Es is modelled median soil evaporation. Modelled data reproduced the nitrogen-driven trade-off between nitrogen utilisation efficiency and water use efficiency in a transect from Horsham (36°S) to Emerald (23°S) in eastern Australia. Increasing nitrogen supply from 50 to 250 kg N ha-1 reduced yield per unit nitrogen uptake from 29 to 12 kg grain kg-1 N and increased yield per unit evapotranspiration from 6 to 15 kg grain ha-1 mm-1 at Emerald. The same increment in nitrogen supply reduced yield per unit nitrogen uptake from 30 to 25 kg grain kg-1 N and increased yield per unit evapotranspiration from 6 to 25 kg grain ha-1 mm-1 at Horsham. Maximum yield ranged from 0.9 to 6.4 t ha-1. Consistent with our working hypothesis, reductions in maximum yield with nitrogen deficit were associated with both reduction in the rate of yield response to ET and compression of the range of yield response to ET. Against the notion of managing crops to maximise water use efficiency in low rainfall environments, we emphasise the trade-off between water use efficiency and nitrogen utilisation efficiency, particularly under conditions of high nitrogen-to-grain price ratio. The rate-range framework to characterise the relationship between yield and evapotranspiration is useful to capture this trade-off as the parameters were responsive to both nitrogen supply and climatic factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper quantifies gaseous N losses due to ammonia volatilisation and denitrification under controlled conditions at 30 degrees C and 75% to 150% of Field Capacity (FC). Biosolids were mixed with two contrasting soils from subtropical Australia at a rate designed to meet crop N requirements for irrigated cotton or maize (i.e., equivalent to 180 kg N ha(-1)). In the first experiment, aerobically (AE) and anaerobically (AN) digested biosolids were mixed into a heavy Vertosol soil and then incubated for 105 days. Ammonia volatilization over 72 days accounted for less than 4% of the applied NH4-N but 24% (AN) to 29% (AE) of the total applied biosolids' N was lost through denitrification in 105 days. In the second experiment AN biosolids with and without added polyacrimide polymer were mixed with either a heavy Vertosol or a lighter Red Ferrosol and then incubated for 98 days. The N loss was higher from the Vertosol with 16-29% of total N applied versus the Red Ferrosol with 7-10% of total N applied, while addition of polymer to the biosolids increased N loss from 7 to 10% and from 16 to 29% in the Red Ferrosol and Vertosol, respectively. A major product from the denitrification process was N-2 gas, accounting for >90% of the emitted N gases from both experiments. Our findings demonstrate that denitrification could be a major pathway of gaseous N losses under warm and moist conditions.