987 resultados para NANOCOMPOSITE STRUCTURE
Resumo:
Management
Resumo:
O objectivo desta dissertação é identificar a estrutura da percepção tal como ela é desenhada por Hiérocles nos <,(#= >1!(?$%&'(). Para alcançar este objectivo focar-me-ei na análise que o filósofo estóico leva a cabo em torno da percepção. O foco começa por incindir sobre a distinção entre percepção de si e percepção do exterior, com todas as suas subtilezas. Tal análise implicará então a consideração da importância da não-indiferença nessa estrutura de percepção. O objectivo é compreender como a percepção é sempre relacional e interessada. . Centrar-me-ei então na noção de !"#$%&'(), tentanto explorar a complexidade e multiplicidade do fenómeno em causa. Será também estabalecida a relação com o fragmento de Estobeu (6.671), que é, a par da obra, a fonte mais importante do pensamento de Hiérocles. Através desta relação introduzir-se-á a estrutura circular e concêntrica de uma percepção relacional e interessada. Toda esta dissertação será levada a cabo focando-se principalmente nos textos do próprio Hiérocles.
Resumo:
In 2007, the UK government commissioned the Energy Demand Research Project to conduct a large scale experiment of smart metering technologies to test the impacts from many different forms of feedback to residential consumers. A full evaluation of the results was completed in 2011. In Portugal, EDP is also conducting smart meter trials in a project called InovCity in the city of Évora whose results will be evaluated during 2012. In this work, the case of Great Britain is studied as a reference on how an evaluation of trial results should be conducted. I also discuss potential limitations of the experiments, implications for national roll-out decisions, and finally draw some lessons that can be applied to the Portuguese case.
Resumo:
Circulating tumor cells (CTCs) may induce metastases when detached from the primary tumor. The numbers of these cells in blood offers a valuable prognostic indication. Magnetoresistive sensing is an attractive option for CTC counting. In this technique, cells are labeled with nancomposite polymer beads that provide the magnetic signal. Bead properties such as size and magnetic content must be optimized in order to be used as a detection tool in a magnetoresistive platform. Another important component of the platform is the magnet required for proper sensing. Both components are addressed in this work. Nanocomposite polymer beads were produced by nano-emulsion and membrane emulsification. Formulations of the oil phase comprising a mixture of aromatic monomers and iron oxide were employed. The effect of emulsifier (surfactant) concentration on bead size was studied. Formulations of polydimethilsiloxane (PDMS) with different viscosities were also prepared with nano-emulsion method resulting in colloidal beads. Polycaprolactone (PCL) beads were also synthetized by the membrane emulsification method. The beads were characterized by different techiques such as dynamic light scattering (DLS), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Additionally, the magnet dimensions of the platform designed to detect CTCs were optimized through a COMSOL multiphysics simulation.
Resumo:
Large chromosomal rearrangements are common in natural populations and thought to be involved in speciation events. In this project, we used experimental evolution to determine how the speed of evolution and the type of accumulated mutations depend on the ancestral chromosomal structure and genotype. We utilized two Wild Type strains and a set of genetically engineered Schizosaccharomyces pombe strains, different solely in the presence of a certain type of chromosomal variant (inversions or translocations), along with respective controls. Previous research has shown that these chromosomal variants have different fitness levels in several environments, probably due to changes in the gene expression along the genome. These strains were propagated in the laboratory at very low population sizes, in which we expect natural selection to be less efficient at purging deleterious mutations. We then measured these strains’ changes in fitness throughout this accumulation of deleterious mutations, comparing the evolutionary trajectories in the different rearrangements to understand if the chromosomal structure affected the speed of evolution. We also tested these mutations for possible epistatic effects and estimated their parameters: the number of arising deleterious mutations per generation (Ud) and each one’s mean effect (sd).
Resumo:
We intend to study the algebraic structure of the simple orthogonal models to use them, through binary operations as building blocks in the construction of more complex orthogonal models. We start by presenting some matrix results considering Commutative Jordan Algebras of symmetric matrices, CJAs. Next, we use these results to study the algebraic structure of orthogonal models, obtained by crossing and nesting simpler ones. Then, we study the normal models with OBS, which can also be orthogonal models. We intend to study normal models with OBS (Orthogonal Block Structure), NOBS (Normal Orthogonal Block Structure), obtaining condition for having complete and suffcient statistics, having UMVUE, is unbiased estimators with minimal covariance matrices whatever the variance components. Lastly, see ([Pereira et al. (2014)]), we study the algebraic structure of orthogonal models, mixed models whose variance covariance matrices are all positive semi definite, linear combinations of known orthogonal pairwise orthogonal projection matrices, OPOPM, and whose least square estimators, LSE, of estimable vectors are best linear unbiased estimator, BLUE, whatever the variance components, so they are uniformly BLUE, UBLUE. From the results of the algebraic structure we will get explicit expressions for the LSE of these models.
Resumo:
A nest of an undescribed species of Euglossa was found inside a fruit of Theobroma subincanum (Sterculiaceae) in the Amazonian rainforest, Ecuador. It contained 3-4 living females and one dead and 37 cells in all. Total length of bee 12.5mm; frons blue-green; thorax blue; abdomen bronze above, green and dark ventrally; and kind tibia blue. Tongue about 11 mm long.
Resumo:
The case is based on Garland, a 240 years old Portuguese family business, now owned by the Dawson family. It focuses on a decision made 50 years ago, aligned with what had been the company’s history, about the ownership rules for family members, which influences the ownership structure of the firm. It addresses the main issues about ownership in family businesses, and tackles the problem of succession planning and fair process. It contains a teaching note to support the utilization of the case in a classroom context, with learning objectives, target audience, a teaching plan, questions and proposed answers, and theory that relates to the case. It is also complemented with an epilogue and an overview of the case.
Resumo:
This thesis is a case study on Corporate Governance and Business Ethics, using the Portuguese Corporate Law as a general setting. The thesis was conducted in Portugal with illustrations on past cases under the Business Judgment Rule of the State of Delaware, U.SA along with illustrations on current cases in Portugal under the Portuguese Judicial setting, along with a comparative analysis between both. A debate is being considered among scholars and executives; a debate on best practices within corporate governance and corporate law, associated with recent discoveries of unlawful investments that lead to the bankruptcy of leading institutions and an aggravation of the crisis in Portugal. The study aimed at learning possible reasons and causes for the current situation of the country’s corporations along with attempts to discover the best way to move forward. From the interviews and analysis conducted, this paper concluded that the corporate governance structure and legal frameworks in Portugal were not the sole influencers behind the actions and decisions of Corporate Executives, nor were they the main triggers for the recent corporate mishaps. But it is rather a combination of different factors that played a significant role, such as cultural and ethical aspects, individual personalities, and others all of which created gray areas beyond the legal structure, which in turn accelerated and aggravated the corporate governance crisis in the country.
Resumo:
The weak fixation of biomaterials within the bone structure is one of the major reasons of implants failures. Calcium phosphate (CaP) coatings are used in bone tissue engineering to improve implant osseointegration by enhancing cellular adhesion, proliferation and differentiation, leading to a tight and stable junction between implant and host bone. It has also been observed that materials compatible with bone tissue either have a CaP coating or develop such a calcified surface upon implantation. Thus, the development of bioactive coatings becomes essential for further improvement of integration with the surrounding tissue. However, most of current applied CaP coatings methods (e.g. physical vapor deposition), cannot be applied to complex shapes and porous implants, provide poor structural control over the coating and prevent incorporation of bioactive organic compounds (e.g. antibiotics, growth factors) because of the used harsh processing conditions. Layer-by-layer (LbL) is a versatile technology that permits the building-up of multilayered polyelectrolyte films in mild conditions based on the alternate adsorption of cationic and anionic elements that can integrate bioactive compounds. As it is recognized in natureâ s biomineralization process the presence of an organic template to induce mineral deposition, this work investigate a ion based biomimetic method where all the process is based on LbL methodology made of weak natural-origin polyelectrolytes. A nanostructured multilayer component, with 5 or 10 bilayers, was produced initially using chitosan and chondroitin sulphate polyelectrolyte biopolymers, which possess similarities with the extracellular matrix and good biocompatibility. The multilayers are then rinsed with a sequential passing of solutions containing Ca2+ and PO43- ions. The formation of CaP over the polyelectrolyte multilayers was confirmed by QCM-D, SEM and EDX. The outcomes show that 10 polyelectrolyte bilayer condition behaved as a better site for initiating the formation of CaP as the precipitation occur at earlier stages than in 5 polyelectrolyte bilayers one. This denotes that higher number of bilayers could hold the CaP crystals more efficiently. This work achieved uniform coatings that can be applied to any surface with access to the liquid media in a low-temperature method, which potentiates the manufacture of effective bioactive biomaterials with great potential in orthopedic applications.
Resumo:
Bioactive glass nanoparticles (BGNPs) promote an apatite surface layer in physiologic conditions that lead to a good interfacial bonding with bone.1 A strategy to induce bioactivity in non-bioactive polymeric biomaterials is to incorporate BGNPs in the polymer matrix. This combination creates a nanocomposite material with increased osteoconductive properties. Chitosan (CHT) is a polymer obtained by deacetylation of chitin and is biodegradable, non-toxic and biocompatible. The combination of CHT and the BGNPs aims at designing biocompatible spheres promoting the formation of a calcium phosphate layer at the nanocomposite surface, thus enhancing the osteoconductivity behaviour of the biomaterial. Shape memory polymers (SMP) are stimuli-responsive materials that offer mechanical and geometrical action triggered by an external stimulus.2 They can be deformed and fixed into a temporary shape which remains stable unless exposed to a proper stimulus that triggers recovery of their original shape. This advanced functionality makes such SMPs suitable to be implanted using minimally invasive surgery procedures. Regarding that, the inclusion of therapeutic molecules becomes attractive. We propose the synthesis of shape memory bioactive nanocomposite spheres with drug release capability.3 1. L. L. Hench, Am. Ceram. Soc. Bull., 1993, 72, 93-98. 2. A. Lendlein and S. Kelch, Angew Chem Int Edit, 2002, 41, 2034-2057. 3. Ã . J. Leite, S. G. Caridade and J. F. Mano, Journal of Non-Crystalline Solids (in Press)
Resumo:
Within the civil engineering field, the use of the Finite Element Method has acquired a significant importance, since numerical simulations have been employed in a broad field, which encloses the design, analysis and prediction of the structural behaviour of constructions and infrastructures. Nevertheless, these mathematical simulations can only be useful if all the mechanical properties of the materials, boundary conditions and damages are properly modelled. Therefore, it is required not only experimental data (static and/or dynamic tests) to provide references parameters, but also robust calibration methods able to model damage or other special structural conditions. The present paper addresses the model calibration of a footbridge bridge tested with static loads and ambient vibrations. Damage assessment was also carried out based on a hybrid numerical procedure, which combines discrete damage functions with sets of piecewise linear damage functions. Results from the model calibration shows that the model reproduces with good accuracy the experimental behaviour of the bridge.
Numerical Assessment of the out-of-plane response of a brick masonry structure without box behaviour
Resumo:
This paper presents the assessment of the out-of-plane response due to seismic loading of a masonry structure without rigid diaphragm. This structure corresponds to real scale brick masonry specimen with a main façade connected to two return walls. Two modelling approaches were defined for this evaluation. The first one consisted on macro modelling, whereas the second one on simplified micro modelling. As a first step of this study, static nonlinear analyses were conducted to the macro model aiming at evaluating the out-of-plane response and failure mechanism of the masonry structure. A sensibility analyses was performed in order to assess the mesh size and material model dependency. In addition, the macro models were subjected to dynamic nonlinear analyses with time integration in order to assess the collapse mechanism. Finally, these analyses were also applied to a simplified micro model of the masonry structure. Furthermore, these results were compared to experimental response from shaking table tests. It was observed that these numerical techniques simulate correctly the in-plane behaviour of masonry structures. However, the
Resumo:
The herb community of tropical forests is very little known, with few studies addressing its structure quantitatively. Even with this scarce body of information, it is clear that the ground herbs are a rich group, comprising 14 to 40% of the species found in total species counts in tropical forests. The present study had the objective of increasing the knowledge about the structure and composition of the ground-herb community and to compare the sites for which there are similar studies. The study was conducted in a tropical non-inundated and evergreen forest 90 km north of Manaus, AM. Ground herbs were surveyed in 22 transects of 40 m², distributed in five plots of 4 ha. The inventoried community was composed of 35 species, distributed in 24 genera and 18 families. Angiosperms were represented by 8 families and Pteridophytes by 10 families. Marantaceae (12 sp) and Cyperaceae (4 sp) were the richest families. Marantaceae and Poaceae were the families with greatest abundance and cover. Marantaceae, Poaceae, Heliconiaceae and Pteridophytes summed 96% of total herb cover, and therefore were responsible for almost all the cover of the community. The 10 most important species had 83.7% of the individuals. In general, the most abundant species were also the most frequent. Richness per transect varied from 7 to 19 species, and abundance varied from 30 to 114 individuals. The community structure was quite similar to 3 other sites in South America and one site in Asia.
Resumo:
This paper reports on the changes in the structural and morphological features occurring in a particular type of nanocomposite thin-film system, composed of Au nanoparticles (NPs) dispersed in a host TiO2 dielectric matrix. The structural and morphological changes, promoted by in-vacuum annealing experiments of the as-deposited thin films at different temperatures (ranging from 200 to 800 C), resulted in a well-known localized surface plasmon resonance (LSPR) phenomenon, which gave rise to a set of different optical responses that can be tailored for a wide number of applications, including those for optical-based sensors. The results show that the annealing experiments enabled a gradual increase of the mean grain size of the Au NPs (from 2 to 23 nm), and changes in their distributions and separations within the dielectric matrix. For higher annealing temperatures of the as-deposited films, a broad size distribution of Au NPs was found (sizes up to 100 nm). The structural conditions necessary to produce LSPR activity were found to occur for annealing experiments above 300 C, which corresponded to the crystallization of the gold NPs, with an average size strongly dependent on the annealing temperature itself. The main factor for the promotion of LSPR was the growth of gold NPs and their redistribution throughout the host matrix. On the other hand, the host matrix started to crystallize at an annealing temperature of about 500 C, which is an important parameter to explain the shift of the LSPR peak position to longer wavelengths, i.e. a red-shift.