522 resultados para N-alkane


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low concentrations of organic carbon in slowly accumulating sediments from Sites 597, 600, and 601 reflect a history of low marine productivity in the subtropical South Pacific since late Oligocene times. The distributions of n-alkanes, n-alkanoic acids, and n-alkanols provide evidence of the microbial alteration of sediment organic matter. Landderived hydrocarbons, possibly from eolian transport, dominate n-alkane distributions in these samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates organic-rich sedimentary sequences deposited during the early Aptian Oceanic Anoxic Event (OAE1a) at Sites 1207 and 1213 on Shatsky Rise (ODP Leg 198) in the west-central Pacific. Biomarker analyses provide evidence of the algal and bacterial origin of organic matter (OM) in these sediments where the abundance of steroidal components, particularly sterenes and sterones, suggests that the OM includes major contributions from eukaryotic sources in an environment characterized by high phytoplankton productivity. The presence of alkenones at Site 1213B is diagnostic of OM derived from representatives of haptophyte algae among the calcareous nannoplankton and their d13C values (average -31.6 per mil) are consistent with those expected during elevated pCO2. The occurrence and prominence of 2b-methylhopanes and 2b-methylhopanones indicates significant contributions to the OM from cyanobacteria, which are also likely contributors of hopanoids based on their d13C compositions. These biomarker data suggest that oceanic conditions, perhaps nitrate- or iron-limited, were conducive to cyanobacteria production during OAE1a, which appears to distinguish this event from other Cretaceous OAE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A valid assessment of selective aerobic degradation on organic matter (OM) and its impact on OM-based proxies is vital to produce accurate environmental reconstructions. However, most studies investigating these effects suffer from inherent environmental heterogeneities. In this study, we used surface samples collected along two meter-scale transects and one longer transect in the northeastern Arabian Sea to constrain initial OM heterogeneity, in order to evaluate selective aerobic degradation on temperature, productivity and alteration indices at the sediment-water interface. All of the studied alteration indices, the higher plant alkane index, alcohol preservation index, and diol oxidation index, demonstrated that they are sensitive indicators for changes in the oxygen regime. Several export production indices, a cholesterol-based stanol/stenol index and dinoflagellate lipid- and cyst-based ratios, showed significant (more than 20%) change only over the lateral oxygen gradients. Therefore, these compounds do not exclusively reflect surface water productivity, but are significantly altered after deposition. Two of the proxies, glycerol dibiphytanyl glycerol tetraether-based TEX86 sea surface temperature indices and indices based on phytol, phytane and pristane, did not show any trends related to oxygen. Nevertheless, unrealistic sea surface temperatures were obtained after application of the TEX86, TEX86L, and TEX86H proxies. The phytol-based ratios were likely affected by the sedimentary production of pristane. Our results demonstrate the selective impact of aerobic organic matter degradation on the lipid and palynomorph composition of surface sediments along a short lateral oxygen gradient and suggest that some of the investigated proxies may be useful tracers of changing redox conditions at the sediment-water interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen isotope values (dD) of sedimentary terrestrial leaf wax such as n-alkanes or n-acids have been used to map and understand past changes in rainfall amount in the tropics because dD of precipitation is commonly assumed as the first order controlling factor of leaf wax dD. Plant functional types and their photosynthetic pathways can also affect leaf wax dD but these biological effects are rarely taken into account in paleo studies relying on this rainfall proxy. To investigate how biological effects may influence dD values we here present a 37,000-year old record of dD and stable carbon isotopes (d13C) measured on four n-alkanes (n-C27, n-C29, n-C31, n-C33) from a marine sediment core collected off the Zambezi River mouth. Our paleo d13C records suggest that each individual n-alkanes had different C3/C4 proportional contributions. n-C29 was mostly derived from a C3 dicots (trees, shrubs and forbs) dominant vegetation throughout the entire record. In contrast, the longer chain n-C33 and n-C31 were mostly contributed by C4 grasses during the Glacial period but shifted to a mixture of C4 grasses and C3 dicots during the Holocene. Strong correlations between dD and d13C values of n-C33 (correlation coefficient R2 = 0.75, n = 58) and n-C31 (R2 = 0.48, n = 58) suggest that their dD values were strongly influenced by changes in the relative contributions of C3/C4 plant types in contrast to n-C29 (R2 = 0.07, n = 58). Within regions with variable C3/C4 input, we conclude that dD values of n-C29 are the most reliable and unbiased indicator for past changes in rainfall, and that dD and d13C values of n-C31 and n-C33 are sensitive to C3/C4 vegetation changes. Our results demonstrate that a robust interpretation of palaeohydrological data using n-alkane dD requires additional knowledge of regional vegetation changes from which nalkanes are synthesized, and that the combination of dD and d13C values of multiple n-alkanes can help to differentiate biological effects from those related to the hydrological cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is believed that C4 to C7 hydrocarbons in petroleum are formed by the cracking of organic matter at depths generally exceeding 1,000 m at temperatures in excess of 50 °C (Cordel, 1972; Dow, 1974; Tissot et al., 1974)). Also, none of the alkanes in the butane-heptane range are formed biologically as far as is known at present. Consequently, it is thought that they do not occur in shallow, Recent sediments. In 1962, I analysed 22 samples of Recent sediments from 7 different environments and verified that these hydrocarbons were not present at the p.p.m. level (Dunton and Hunt, 1962) although traces of a few hydrocarbons such as butane, isobutane, isopentane and n-heptane have been found (Sokolov, 1957; Veber and Turkeltaub, 1958; Erdman et al., 1958; Emery and Hoggan, 1958). No identification of individual hexanes or heptanes has been reported except when there has been clear evidence of seepage from deeper source sediments (McIver, 1973).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data on the amount and composition of organic carbon were determined in sediment cores from the Kara and Laptev Sea continental margin, representing oxygen isotope stages 1-6. The characterization of organic matter is based on hydrogen index (HI) values, n-alkanes and maceral composition, indicating the predominance of terrigenous organic matter through space and time. The variations in the amount and composition of organic carbon are mainly influenced by changes in fluvial sediment supply, Atlantic water inflow, and continental ice sheets. During oxygen isotope stage (OIS) 6, high organic carbon contents in sediments from the Laptev Sea and western East Siberian Sea continental margin were probably caused by the increased glacial erosion and further transport in the eastward-flowing boundary current along the continental margin. During OIS 5 and early OIS 3, some increased amounts of marine organic matter were preserved in sediments east of the Lomonosov Ridge, suggesting an influence of nutrient-rich Pacific waters. During OIS 2, terrigenous organic carbon supply was increased along the Barents and western Kara Sea continental margin caused by extended continental ice sheets in the Barents Sea (Svalbard to Franz Josef Land) area and increased glacial erosion. Along the Laptev Sea continental margin, on the other hand, the supply of terrigenous (organic) matter was significantly reduced due to the lack of major ice sheets and reduced river discharge. Towards the Holocene, the amount of total organic carbon (TOC) increased along the Kara and Laptev Sea continental margin, reaching average values of up to 0.5 g C/cm**2/ky. Between about 8 and 10 ka (9 and 11 Cal ka), i.e., during times when the inner shallow Kara and Laptev seas became largely flooded for the first time after the Last Glacial Maximum, maximum supply of terrigenous organic carbon occurred, which is related to an increase in coastal erosion and Siberian river discharge. During the last 8000 years, the increased amount of marine organic carbon preserved in the sediments from the Kara and Laptev Sea continental margin is interpreted as a result of the intensification of Atlantic water inflow along the Eurasian continental margin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bituminologic analysis of sediment cores from the Black Sea (water depth up to 2000 m, drilling depth up to 625 m) has revealed all components typical for fossilized rocks, viz. hydrocarbons, resins, asphaltenes, and insoluble matter. Proportions of these components, their composition and properties do not display any dependence on depth in hole and seem to be governed by composition of organic matter and conditions and degree of its transformation at early stages of lithogenesis.