959 resultados para Myosin regulatory light chain
Resumo:
The molecular chaperone, Hsc70, together with its cofactor, auxilin, facilitates the ATP-dependent removal of clathrin during clathrin-mediated endocytosis in cells. We have used cryo-electron microscopy to determine the 3D structure of a complex of clathrin, auxilin401-910 and Hsc70 at pH 6 in the presence of ATP, frozen within 20 seconds of adding Hsc70 in order to visualize events that follow the binding of Hsc70 to clathrin and auxilin before clathrin disassembly. In this map,we observe density beneath the vertex of the cage that we attribute to bound Hsc70. This density emerges asymmetrically from the clathrin vertex, suggesting preferential binding by Hsc70 for one of the three possible sites at the vertex. Statistical comparison with a map of whole auxilin and clathrin previously published by us reveals the location of statistically significant differences which implicate involvement of clathrin light chains in structural rearrangements which occur after Hsc70 is recruited. Clathrin disassembly assays using light scattering suggest that loss of clathrin light chains reduces the efficiency with which auxilin facilitates this reaction. These data support a regulatory role for clathrin light chains in clathrin disassembly in addition to their established role in regulating clathrin assembly. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Resumo:
Healthcare organisations are increasingly being challenged to look at their operations and find opportunities to improve the quality, efficiency and effectiveness of their supply chain services. In light of this situation, there is an apparent need for healthcare organisations to invest in integration technologies and to achieve the integration of supply chain processes, in order to break up the historical structure characterised by numerous interfaces and the segregation of responsibilities. The aim of this paper is to take an independent look at the healthcare supply chain and identify at different levels the core entities, processes, information flows, and system integration challenges which impede supply chain quality improvements to be realised. Moreover, this paper proposes, from an information systems perspective, a framework for the evaluation of different integration technology approaches, which can be used as a potential guideline tool for assessing integration technology alternatives, in order to add value to a healthcare-supply-chain management system. Copyright © 2007 Inderscience Enterprises Ltd.
Resumo:
VSC converters are becoming more prevalent for HVDC applications. Two circuits are commercially available at present, a traditional six-switch, PWM inverter, implemented using series connected IGBTs - ABBs HVDC Light®, and the other a modular multi-level converter (MMC) - Siemens HVDC-PLUS. This paper presents an alternative MMC topology, which utilises a novel current injection technique, and exhibits several desirable characteristics.
Resumo:
This chapter investigates the resistance by institutional actors in ambiguous supply chain environments for online grocery provision. Recent studies have shown that significant shifts in urban geographies are increasing consumers' expectations of online retail provision. However, at the same time there is also growing evidence that the collaborative practice in online grocery provision within the urban supply chains is resisted. That these trends are found despite growing demand of online provision highlights both the difficulty of bringing geographically dispersed supply partners together and the problems associated with operating within and across ambiguous environments. Drawing upon twenty-nine in-depth interviews with a range of institutional actors, including retail, logistics, and urban planning experts within an urban metropolis in an emerging market, we detail the different ways that collaboration is resisted in online retail provision. Several different patterns of resistance were identified in (non-) collaboration notably, ideological, functional, regulatory and spatial. © 2011, IGI Global. C.
Resumo:
A szerzők célja, hogy megvizsgálják, milyen kölcsönhatásban áll az ellátási láncban elfoglalt pozíció, valamint a szolgálatosodás szintje az európai termelővállalatoknál. Vizsgálatuk azt mutatja, hogy a globalizáció és a termelés nemzetközivé válása mindkét tényezőt jelentős mértékben befolyásolja. A termelés globalizációs trendjeinek megfelelően így a kelet-európai (fejlődő), illetve a nyugat-európai (fejlett) országokban eltérő üzleti modellek válnak dominánssá, amelyek különböző ellátásilánc-pozícióval és más-más szintű szolgáltatásnyújtással jellemezhetőek. A domináns üzleti modellek mellett természetesen más üzleti modellek is működőképesnek bizonyulhatnak a két vizsgált régióban. A létesítmények elhelyezésére, valamint az üzleti eredményességre vonatkozó mutatók elemzésbe történő bevonásával cikkük az Európában működő üzleti modellek kialakításának okára, valamint jövőbeli fenntarthatóságára is megpróbál választ adni. __________ The objective of this paper is to examine the relationship between supply chain position and level of servitization in European manufacturing companies. The analysis shows that globalization and internationalization of production has dramatic impact on both phenomena. Due to the globalization trends different business models became dominant in the less developed Eastern-European and the more developed Western European countries, which can be characterized by different supply chain position and servitization level. Certainly other business models can also be successful in the two regions. Involving facility location motivations and business performance indicators the article shed light on the reasons of why these business models came alive and how sustainable they can be.
Resumo:
This thesis would not have been possible without the aid of my family, friends, laboratory members, and professors. First and foremost, I would like to thank Dr. Kalai Mathee for allowing me to enter her lab in August 2007 and enabling to embark on this journey. This experience has transformed me into more mature scientist, teaching me how to ask the right questions and the process needed to solve them. I would also like to acknowledge Dr. Lisa Schneper. She has helped me throughout the whole process, by graciously giving me input at every step of the way. I would like to express gratitude to Dr. Jennifer Richards for all her input in writing the thesis. She has been a great teacher and being in her class has been a pleasure. Moreover, I would like to thank all the committee members for their constructive criticism throughout the process. When I entered the lab in August, there was one person who literally was by my side, Melissa Doud. Without your input and guidance I would not have even been able to do these experiments. I would also like to thank you and Dr. Light for allowing me to meet some cystic fibrosis patients. It has allowed me to put a face on the disease, and help the patients' fight. For a period before I had entered the lab, Ms. Doud had an apprentice, who started the fungal aspect of the project, Caroline Veronese. Her initial work has enabled me to prefect the protocols and complete the ITS 1 region.One very unique aspect about Dr. Mathee's lab is the camaraderie. I would like to thank all the lab members for the good times in and out of the lab. These individuals have been able to make smile and laugh in parties and lab meetings. I would like to individually thank Balachandar Dananjeyan, Deepak Balasubramanian, and V arinderpal Singh Pannu for all the PCR help and Natalie Maricic for the laughs and being a great classmate. Last, but not least, I would like to acknowledge my family and friends for their support and keeping me sane: Cecilia, my mother, Mohammad, my father, Amir, my older brother, Billal, my younger brother, Ouday Akkari and Stephanie De Bedout, my best friends.
Resumo:
In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. Previous studies showed that in addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, the transcriptional profiles generated using DNA microarrays and RNA-Seq of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion mutant, PAOΔampR were analyzed. Transcriptome analysis demonstrates that the AmpR regulon is much more extensive than previously thought influencing the differential expression of over 500 genes. In addition to regulating resistance to β-lactam antibiotics via AmpC, AmpR also regulates non-β-lactam antibiotic resistance by modulating the MexEF-OprN efflux pump. Virulence mechanisms including biofilm formation, QS-regulated acute virulence, and diverse physiological processes such as oxidative stress response, heat-shock response and iron uptake are AmpR-regulated. Real-time PCR and phenotypic assays confirmed the transcriptome data. Further, Caenorhabditis elegans model demonstrates that a functional AmpR is required for full pathogenicity of P. aeruginosa. AmpR, a member of the core genome, also regulates genes in the regions of genome plasticity that are acquired by horizontal gene transfer. The extensive AmpR regulon included other transcriptional regulators and sigma factors, accounting for the extensive AmpR regulon. Gene expression studies demonstrate AmpR-dependent expression of the QS master regulator LasR that controls expression of many virulence factors. Using a chromosomally tagged AmpR, ChIP-Seq studies show direct AmpR binding to the lasR promoter. The data demonstrates that AmpR functions as a global regulator in P. aeruginosa and is a positive regulator of acute virulence while negatively regulating chronic infection phenotypes. In summary, my dissertation sheds light on the complex regulatory circuit in P. aeruginosa to provide a better understanding of the bacterial response to antibiotics and how the organism coordinately regulates a myriad of virulence factors.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
B cells mediate immune responses via the secretion of antibody and interactions with other immune cell populations through antigen presentation, costimulation, and cytokine secretion. Although B cells are primarily believed to promote immune responses using the mechanisms described above, some unique regulatory B cell populations that negatively influence inflammation have also been described. Among these is a rare interleukin (IL)-10-producing B lymphocyte subset termed “B10 cells.” B cell-derived IL-10 can inhibit various arms of the immune system, including polarization of Th1/Th2 cell subsets, antigen presentation and cytokine production by monocytes and macrophages, and activation of regulatory T cells. Further studies in numerous autoimmune and inflammatory models of disease have confirmed the ability of B10 cells to negatively regulate inflammation in an IL-10-dependent manner. Although IL-10 is indispensable to the effector functions of B10 cells, how this specialized B cell population is selected in vivo to produce IL-10 is unknown. Some studies have demonstrated a link between B cell receptor (BCR)-derived signals and the acquisition of IL-10 competence. Additionally, whether antigen-BCR interactions are required for B cell IL-10 production during homeostasis as well as active immune responses is a matter of debate. Therefore, the goal of this thesis is to determine the importance of antigen-driven signals during B10 cell development in vivo and during B10 cell-mediated immunosuppression.
Chapter 3 of the dissertation explored the BCR repertoire of spleen and peritoneal cavity B10 cells using single-cell sequencing to lay the foundation for studies to understand the full range of antigens that may be involved in B10 cell selection. In both the spleen and peritoneal cavity B10 cells studied, BCR gene utilization was diverse, and the expressed BCR transcripts were largely unmutated. Thus, B10 cells are likely capable of responding to a wide range of foreign and self-antigens in vivo.
Studies in Chapter 4 determined the predominant antigens that drive B cell IL-10 secretion during homeostasis. A novel in vitro B cell expansion system was used to isolate B cells actively expressing IL-10 in vivo and probe the reactivities of their secreted monoclonal antibodies. B10 cells were found to produce polyreactive antibodies that bound multiple self-antigens. Therefore, in the absence of overarching active immune responses, B cell IL-10 is secreted following interactions with self-antigens.
Chapter 5 of this dissertation investigated whether foreign antigens are capable of driving B10 cell expansion and effector activity during an active immune response. In a model of contact-induced hypersensitivity, in vitro B cell expansion was again used to isolate antigen-specific B10 clones, which were required for optimal immunosuppression.
The studies described in this dissertation shed light on the relative contributions of BCR-derived signals during B10 cell development and effector function. Furthermore, these investigations demonstrate that B10 cells respond to both foreign and self-antigens, which has important implications for the potential manipulation of B10 cells for human therapy. Therefore, B10 cells represent a polyreactive B cell population that provides antigen-specific regulation of immune responses via the production of IL-10.
Resumo:
While molecular and cellular processes are often modeled as stochastic processes, such as Brownian motion, chemical reaction networks and gene regulatory networks, there are few attempts to program a molecular-scale process to physically implement stochastic processes. DNA has been used as a substrate for programming molecular interactions, but its applications are restricted to deterministic functions and unfavorable properties such as slow processing, thermal annealing, aqueous solvents and difficult readout limit them to proof-of-concept purposes. To date, whether there exists a molecular process that can be programmed to implement stochastic processes for practical applications remains unknown.
In this dissertation, a fully specified Resonance Energy Transfer (RET) network between chromophores is accurately fabricated via DNA self-assembly, and the exciton dynamics in the RET network physically implement a stochastic process, specifically a continuous-time Markov chain (CTMC), which has a direct mapping to the physical geometry of the chromophore network. Excited by a light source, a RET network generates random samples in the temporal domain in the form of fluorescence photons which can be detected by a photon detector. The intrinsic sampling distribution of a RET network is derived as a phase-type distribution configured by its CTMC model. The conclusion is that the exciton dynamics in a RET network implement a general and important class of stochastic processes that can be directly and accurately programmed and used for practical applications of photonics and optoelectronics. Different approaches to using RET networks exist with vast potential applications. As an entropy source that can directly generate samples from virtually arbitrary distributions, RET networks can benefit applications that rely on generating random samples such as 1) fluorescent taggants and 2) stochastic computing.
By using RET networks between chromophores to implement fluorescent taggants with temporally coded signatures, the taggant design is not constrained by resolvable dyes and has a significantly larger coding capacity than spectrally or lifetime coded fluorescent taggants. Meanwhile, the taggant detection process becomes highly efficient, and the Maximum Likelihood Estimation (MLE) based taggant identification guarantees high accuracy even with only a few hundred detected photons.
Meanwhile, RET-based sampling units (RSU) can be constructed to accelerate probabilistic algorithms for wide applications in machine learning and data analytics. Because probabilistic algorithms often rely on iteratively sampling from parameterized distributions, they can be inefficient in practice on the deterministic hardware traditional computers use, especially for high-dimensional and complex problems. As an efficient universal sampling unit, the proposed RSU can be integrated into a processor / GPU as specialized functional units or organized as a discrete accelerator to bring substantial speedups and power savings.
Resumo:
Protection of innovation in the pharmaceutical industry has traditionally been realised through protection of inventions via patents. However, in the European Union regulatory exclusivities restricting market entry of generic products confer tailored, industry specific protection for final, marketable products. This paper retraces the protection conferred by the different forms of exclusivity and assesses them in the light of recent transparency policies of the European Medicines Agency. The purpose of the paper is to argue for rethinking the role of regulatory data as a key tool of innovation policy and for refocusing the attention from patents to the existing regulatory framework. After detailed assessment of the exclusivity regime, the paper identifies key areas of improvement calling for reassessment so as to promote better functioning of the regime as an incentive for accelerated innovation. While economic and public health analysis necessarily provide final answers as to necessity of reform, this paper provides a legal perspective to the issue, appraising the current regulatory framework and identifying areas for further analysis.
Resumo:
Background: Nosocomial sepsis (NS) in newborns (NBs) is associated with high mortality rates and low microbial recovery rates. To overcome the latter problem, new techniques in molecular biology are being used. Objectives: To evaluate the diagnostic efficacy of SeptiFast test for the diagnosis of nosocomial sepsis in the newborn. Materials and Methods: 86 blood specimens of NBs with suspected NS (NOSEP-1 Test > 8 points) were analyzed using Light Cycler SeptiFast (LC-SF) a real-time multiplex PCR instrument. The results were analyzed with the Roche SeptiFast Identification Software. Another blood sample was collected to carry out a blood culture (BC). Results: Sensitivity (Sn) and specificity (Sp) of 0.69 and 0.65 respectively, compared with blood culture (BC) were obtained for LC-SF. Kappa index concordance between LC-SF and BC was 0.21. Thirteen (15.11%) samples were BC positive and 34 (31.39%) were positive with LC-SF tests. Conclusions: Compared with BC, LC-SF allows the detection of a greater number of pathogenic species in a small blood sample (1 mL) with a shorter response time.
Reputational risk of banks : a study on the effects of regulatory sanctions for major european banks
Resumo:
Mestrado em Finanças
Resumo:
The response regulator RpaB (regulator of phycobilisome associated B), part of an essential two-component system conserved in cyanobacteria that responds to multiple environmental signals, has recently been implicated in the control of cell dimensions and of circadian rhythms of gene expression in the model cyanobacterium Synechococcus elongatus PCC 7942. However, little is known of the molecular mechanisms that underlie RpaB functions. In this study we show that the regulation of phenotypes by RpaB is intimately connected with the activity of RpaA (regulator of phycobilisome associated A), the master regulator of circadian transcription patterns. RpaB affects RpaA activity both through control of gene expression, a function requiring an intact effector domain, and via altering RpaA phosphorylation, a function mediated through the N-terminal receiver domain of RpaB. Thus, both phosphorylation cross-talk and coregulation of target genes play a role in the genetic interactions between the RpaA and RpaB pathways. In addition, RpaB∼P levels appear critical for survival under light:dark cycles, conditions in which RpaB phosphorylation is environmentally driven independent of the circadian clock. We propose that the complex regulatory interactions between the essential and environmentally sensitive NblS-RpaB system and the SasA-RpaA clock output system integrate relevant extra- and intracellular signals to the circadian clock.