945 resultados para Myocardial regeneration
Resumo:
Heart failure has been divided into several different forms depending on etiology, clinical course and pathophysiology of left ventricular (LV) dysfunction. Systolic and diastolic dysfunction are characterized by a reduced cardiac output with normal (= diastolic dysfunction) or depressed (= systolic dysfunction) LV pump function. New diagnostic techniques such as magnetic resonance imaging (MRI) allow to determine noninvasively LV 3D motion by labelling specific myocardial regions (= myocardial "tagging") with a rectangular or radial grid. From the deformation of this grid rotational and translational motion of the heart can be derived. A "wringing" motion of the left ventricle has been described during systole which includes a clockwise rotation at the base and a counterclockwise rotation at the apex. During diastole, an "untwisting" motion has been demonstrated. In the normal heart, diastolic "untwisting" occurs primarily during isovolumic relaxation, analogous to the systolic "wringing" which takes place mainly during isovolumic contraction. A prolongation of the "untwisting" motion was found in the hypertrophied (aortic stenosis) and hibernating myocardium. Thus, heart failure is associated with profound alterations in the mechanical function of the heart which are manifested by changes in systolic "wringing" and diastolic "untwisting" motion.
Trends in management and outcome of acute myocardial infarction in Switzerland between 1998 and 2008
Resumo:
Images of myocardial strain can be used to diagnose heart disease, plan and monitor treatment, and to learn about cardiac structure and function. Three-dimensional (3D) strain is typically quantified using many magnetic resonance (MR) images obtained in two or three orthogonal planes. Problems with this approach include long scan times, image misregistration, and through-plane motion. This article presents a novel method for calculating cardiac 3D strain using a stack of two or more images acquired in only one orientation. The zHARP pulse sequence encodes in-plane motion using MR tagging and out-of-plane motion using phase encoding, and has been previously shown to be capable of computing 3D displacement within a single image plane. Here, data from two adjacent image planes are combined to yield a 3D strain tensor at each pixel; stacks of zHARP images can be used to derive stacked arrays of 3D strain tensors without imaging multiple orientations and without numerical interpolation. The performance and accuracy of the method is demonstrated in vitro on a phantom and in vivo in four healthy adult human subjects.
Resumo:
A procedure is described to regenerate plants from protoplasts of Brazilian citrus cultivars, after isolation, fusion and culture. Protoplasts were isolated from embryogenic cell suspension cultures and from leaf mesophyll of seedlings germinated in vitro. The enzyme solution for protoplast isolation was composed of mannitol (0.7 M), CaCl2 (24.5 mM), NaH2PO4 (0.92 mM), MES (6.15 mM), cellulase (Onozuka RS - Yakult, 1%), macerase (Onozuka R10 - Yakult, 1%) and pectolyase Y-23 (Seishin, 0.2%). Protoplast culture in liquid medium after chemical fusion lead to the formation of callus colonies further adapted to solid medium. Somatic embryo formation occurred spontaneously after two subcultures, on modified MT medium supplemented with 500 mg/L of malt extract. Well defined embryos were germinated in modified MT medium with addition of GA3 (2.0 muM) and malt extract (500 mg/L). Plant regeneration was also achieved by adventitious shoots obtained through direct organogenesis of not well defined embryos in modified MT medium with addition of malt extract (500 mg/L), BAP (1.32 muM), NAA (1.07 muM) and coconut water (10 mL/L). Plantlets were transferred to root medium. Rooted plants were transferred to a greenhouse for further adaptation and development.
Resumo:
Peripheral neurons can regenerate after axotomy; in this process, the role of cytoskeletal proteins is important because they contribute to formation and reorganization, growth, transport, stability and plasticity of axons. In the present study, we examined the effects of thyroid hormones (T3) on the expression of major cytoskeletal proteins during sciatic nerve regeneration. At various times after sciatic nerve transection and T3 local administration, segments of operated nerves from T3-treated rats and control rats were examined by Western blotting for the presence of neurofilament, tubulin and vimentin. Our results revealed that, during the first week after surgery, T3 treatment did not significantly alter the level of NF subunits and tubulin in the different segments of operated nerves compared to control nerves. Two or 4 weeks after operation, the concentration of NF-H and NF-M isoforms was clearly increased by T3 treatment. Moreover, under T3-treatment, NF proteins appeared more rapidly in the distal segment of operated nerves. Likewise, the levels of betaIII, and of acetylated and tyrosinated tubulin isotypes, were also up-regulated by T3-treatment during regeneration. However, only the tyrosinated tubulin form appeared earlier in the distal nerve segments. At this stage of regeneration, T3 had no effect on the level of vimentin expression. In conclusion, thyroid hormone improves and accelerates peripheral nerve regeneration and exerts a positive effect on cytoskeletal protein expression and transport involved in axonal regeneration. These results help us to understand partially the mechanism by which thyroid hormones enhance peripheral nerve regeneration. The stimulating effect of T3 on peripheral nerve regeneration may have considerable therapeutic potential.
Resumo:
Early reperfusion with prompt re-establishment of coronary blood flow improves survival in patients suffering from acute ST-elevation myocardial infarction (STEMI). Leaving systemic thrombolysis for primary percutaneous coronary intervention (PCI) is justified by clinical results in favor of PCI. Nevertheless, primary PCI necessitates additional transfer time and requires an efficient territorial networking. The present article summarizes the up-to-dated management of patients with acute STEMI and/or overt cardiogenic shock.
Resumo:
BACKGROUND/AIMS: The present report examines a new pig model for progressive induction of high-grade stenosis, for the study of chronic myocardial ischemia and the dynamics of collateral vessel growth. METHODS: Thirty-nine Landrace pigs were instrumented with a novel experimental stent (GVD stent) in the left anterior descending coronary artery. Eight animals underwent transthoracic echocardiography at rest and under low-dose dobutamine. Seven animals were examined by nuclear PET and SPECT analysis. Epi-, mid- and endocardial fibrosis and the numbers of arterial vessels were examined by histology. RESULTS: Functional analysis showed a significant decrease in global left ventricular ejection fraction (24.5 +/- 1.6%) 3 weeks after implantation. There was a trend to increased left ventricular ejection fraction after low-dose dobutamine stress (36.0 +/- 6.6%) and a significant improvement of the impaired regional anterior wall motion. PET and SPECT imaging documented chronic hibernation. Myocardial fibrosis increased significantly in the ischemic area with a gradient from epi- to endocardial. The number of arterial vessels in the ischemic area increased and coronary angiography showed abundant collateral vessels of Rentrop class 1. CONCLUSION: The presented experimental model mimics the clinical situation of chronic myocardial ischemia secondary to 1-vessel coronary disease.
Resumo:
Muscle stem cells and their progeny play a fundamental role in the regeneration of adult skeletal muscle. We have previously shown that activation of the canonical Wnt/beta-catenin signaling pathway in adult myogenic progenitors is required for their transition from rapidly dividing transient amplifying cells to more differentiated progenitors. Whereas Wnt signaling in Drosophila is dependent on the presence of the co-regulator Legless, previous studies of the mammalian ortholog of Legless, BCL9 (and its homolog, BCL9-2), have not revealed an essential role of these proteins in Wnt signaling in specific tissues during development. Using Cre-lox technology to delete BCL9 and BCL9-2 in the myogenic lineage in vivo and RNAi technology to knockdown the protein levels in vitro, we show that BCL9 is required for activation of the Wnt/beta-catenin cascade in adult mammalian myogenic progenitors. We observed that the nuclear localization of beta-catenin and downstream TCF/LEF-mediated transcription, which are normally observed in myogenic progenitors upon addition of exogenous Wnt and during muscle regeneration, were abrogated when BCL9/9-2 levels were reduced. Furthermore, reductions of BCL9/9-2 inhibited the promotion of myogenic differentiation by Wnt and the normal regenerative response of skeletal muscle. These results suggest a critical role of BCL9/9-2 in the Wnt-mediated regulation of adult, as opposed to embryonic, myogenic progenitors.
Resumo:
Urban Regeneration. A challenge for Public Art, supposed the start of a trend of critical thought related to the topics of Public Art, Urban Regeneration and Urban Design. This trend agglutinated around the Public Art Observatory that, still today, develops its activities.The book gathers a series of critical proposals organized in the chapters " Art and Design in/for Public Space ", " Forms and Representations of Public Art/Public Space. The Producer/User Dilemma " and " Public Art / Cities in Competition: Strategies, Bridges and Gateways ", with the participation of, among others, Sergi Valera, Ray Smith, Martí Peran, Ian Rawlinson, Chaké Matosian, Enric Pol, J. Hyatt, J. Gingell or T. Bovaird.
Resumo:
BACKGROUND: Whether nucleoside reverse transcriptase inhibitors increase the risk of myocardial infarction in HIV-infected individuals is unclear. Our aim was to explore whether exposure to such drugs was associated with an excess risk of myocardial infarction in a large, prospective observational cohort of HIV-infected patients. METHODS: We used Poisson regression models to quantify the relation between cumulative, recent (currently or within the preceding 6 months), and past use of zidovudine, didanosine, stavudine, lamivudine, and abacavir and development of myocardial infarction in 33 347 patients enrolled in the D:A:D study. We adjusted for cardiovascular risk factors that are unlikely to be affected by antiretroviral therapy, cohort, calendar year, and use of other antiretrovirals. FINDINGS: Over 157,912 person-years, 517 patients had a myocardial infarction. We found no associations between the rate of myocardial infarction and cumulative or recent use of zidovudine, stavudine, or lamivudine. By contrast, recent-but not cumulative-use of abacavir or didanosine was associated with an increased rate of myocardial infarction (compared with those with no recent use of the drugs, relative rate 1.90, 95% CI 1.47-2.45 [p=0.0001] with abacavir and 1.49, 1.14-1.95 [p=0.003] with didanosine); rates were not significantly increased in those who stopped these drugs more than 6 months previously compared with those who had never received these drugs. After adjustment for predicted 10-year risk of coronary heart disease, recent use of both didanosine and abacavir remained associated with increased rates of myocardial infarction (1.49, 1.14-1.95 [p=0.004] with didanosine; 1.89, 1.47-2.45 [p=0.0001] with abacavir). INTERPRETATION: There exists an increased risk of myocardial infarction in patients exposed to abacavir and didanosine within the preceding 6 months. The excess risk does not seem to be explained by underlying established cardiovascular risk factors and was not present beyond 6 months after drug cessation.