900 resultados para Muscular Capacity
Resumo:
Slip-line field solutions are presented for the ultimate load of submarine pipelines on a purely cohesive soil obeying Tresca yield criterion, taking into account of pipe embedment and pipe-soil contact friction. The derived bearing capacity factors for a smooth pipeline degenerate into those for the traditional strip-line footing when the embedment approaches zero. Parametric studies demonstrate that the bearing capacity factors for pipeline foundations are significantly influenced by the pipeline embedment and the pipe-soil frictional coefficient. With the increase of pipeline embedment, the bearing capacity factor Nc decreases gradually, and finally reaches the minimum value (4.0) when the embedment equals to pipeline radius. As such, if the pipeline is directly treated as a traditional strip footing, the bearing capacity factor Nc would be over evaluated. The ultimate bearing loads increase with increasing pipeline embedment and pipe-soil frictional coefficient.
Resumo:
Abstract: The static bearing capacity of suction caisson with single-and four-caissons in saturated sand foundation is studied by experiments. The characteristics of bearing capacity under vertical and horizontal loadings are obtained ex- perimentally. The effects of loading direction on the bearing capacity of four-caissons are studied under horizontal load- ing. The comparison of the bearing capacity of single-caisson and four-caisson foundation, the sealed condition of cais- son’s top and loading rate are analyzed.
Resumo:
The capacity degradation of bucket foundation in liquefied sand layer under cyclic loads such as equivalent dynamic ice-induced loads is studied. A simplified numerical model of liquefied sand layer has been presented based on the dynamic centrifuge experiment results. The ice-induced dynamic loads are modeled as equivalent sine cyclic loads, the liquefaction degree in different position of sand layer and effects of main factors are investigated. Subsequently, the sand resistance is represented by uncoupled, non-linear sand springs which describe the sub-failure behavior of the local sand resistance as well as the peak capacity of bucket foundation under some failure criterion. The capacity of bucket foundation is determined in liquefied sand layer and the rule of capacity degradation is analyzed. The capacity degradation in liquefied sand layer is analyzed comparing with that in non-liquefied sand layer. The results show that the liquefaction degree is 0.9 at the top and is only 0.06 at the bottom of liquefied sand layer. The numerical results are agreement well with the centrifugal experimental results. The value of the degradation of bucket capacity is 12% in numerical simulating whereas it is 17% in centrifugal experiments.
Resumo:
Biological machines are active devices that are comprised of cells and other biological components. These functional devices are best suited for physiological environments that support cellular function and survival. Biological machines have the potential to revolutionize the engineering of biomedical devices intended for implantation, where the human body can provide the required physiological environment. For engineering such cell-based machines, bio-inspired design can serve as a guiding platform as it provides functionally proven designs that are attainable by living cells. In the present work, a systematic approach was used to tissue engineer one such machine by exclusively using biological building blocks and by employing a bio-inspired design. Valveless impedance pumps were constructed based on the working principles of the embryonic vertebrate heart and by using cells and tissue derived from rats. The function of these tissue-engineered muscular pumps was characterized by exploring their spatiotemporal and flow behavior in order to better understand the capabilities and limitations of cells when used as the engines of biological machines.
Resumo:
This thesis brings together four papers on optimal resource allocation under uncertainty with capacity constraints. The first is an extension of the Arrow-Debreu contingent claim model to a good subject to supply uncertainty for which delivery capacity has to be chosen before the uncertainty is resolved. The second compares an ex-ante contingent claims market to a dynamic market in which capacity is chosen ex-ante and output and consumption decisions are made ex-post. The third extends the analysis to a storable good subject to random supply. Finally, the fourth examines optimal allocation of water under an appropriative rights system.
Resumo:
We present the first experimental evidence that the heat capacity of superfluid 4He, at temperatures very close to the lambda transition temperature, Tλ,is enhanced by a constant heat flux, Q. The heat capacity at constant Q, CQ,is predicted to diverge at a temperature Tc(Q) < Tλ at which superflow becomes unstable. In agreement with previous measurements, we find that dissipation enters our cell at a temperature, TDAS(Q),below the theoretical value, Tc(Q). Our measurements of CQ were taken using the discrete pulse method at fourteen different heat flux values in the range 1µW/cm2 ≤ Q≤ 4µW /cm2. The excess heat capacity ∆CQ we measure has the predicted scaling behavior as a function of T and Q:∆CQ • tα ∝ (Q/Qc)2, where QcT) ~ t2ν is the critical heat current that results from the inversion of the equation for Tc(Q). We find that if the theoretical value of Tc( Q) is correct, then ∆CQ is considerably larger than anticipated. On the other hand,if Tc(Q)≈ TDAS(Q),then ∆CQ is the same magnitude as the theoretically predicted enhancement.
Resumo:
A complacência da bexiga depende de músculos lisos, fibras colágenas, fibras elásiticas e suas relações. O objetivo deste trabalho é determinar a composição da matriz extracelular em amostras de bexigas normais através de análise bioquímica de colágeno e glicosaminoglicanos em amostras obtidas de mulheres em diferentes grupos de idade, analisando separadamente as camadas urotelial e muscular. Avaliamos 17 amostras de bexiga divididas em três grupos: infância (N=5), menacme (N=6) e pós-menopausa (N=6). As bexigas foram analisadas para concentração de GAG total e colágeno e para análise qualitativa de GAG por eletroforese em gel de agarose. Na camada muscular, não houve diferença entre os grupos tanto para GAG quanto para colágeno. Na camada urotelial, a análise da concentração de colágeno não mostrou diferença entre os grupos, mas a concentração de GAG no grupo da pós-menopausa (0.21 0.12 μg de ácido hexurônico/mg de tecido seco) apresentou diferença em relação aos grupos do menacme (1.78 1.62 μg de ácido hexurônico/mg de tecido seco) e da infância ( 2.29 1.32 μg de ácido hexurônico/mg de tecido seco).Nosso trabalho concluiu que a concentração de GAG está substancialmente diminuída na camada urotelial da bexiga de mulheres na pós-menopausa.
Resumo:
Network information theory and channels with memory are two important but difficult frontiers of information theory. In this two-parted dissertation, we study these two areas, each comprising one part. For the first area we study the so-called entropy vectors via finite group theory, and the network codes constructed from finite groups. In particular, we identify the smallest finite group that violates the Ingleton inequality, an inequality respected by all linear network codes, but not satisfied by all entropy vectors. Based on the analysis of this group we generalize it to several families of Ingleton-violating groups, which may be used to design good network codes. Regarding that aspect, we study the network codes constructed with finite groups, and especially show that linear network codes are embedded in the group network codes constructed with these Ingleton-violating families. Furthermore, such codes are strictly more powerful than linear network codes, as they are able to violate the Ingleton inequality while linear network codes cannot. For the second area, we study the impact of memory to the channel capacity through a novel communication system: the energy harvesting channel. Different from traditional communication systems, the transmitter of an energy harvesting channel is powered by an exogenous energy harvesting device and a finite-sized battery. As a consequence, each time the system can only transmit a symbol whose energy consumption is no more than the energy currently available. This new type of power supply introduces an unprecedented input constraint for the channel, which is random, instantaneous, and has memory. Furthermore, naturally, the energy harvesting process is observed causally at the transmitter, but no such information is provided to the receiver. Both of these features pose great challenges for the analysis of the channel capacity. In this work we use techniques from channels with side information, and finite state channels, to obtain lower and upper bounds of the energy harvesting channel. In particular, we study the stationarity and ergodicity conditions of a surrogate channel to compute and optimize the achievable rates for the original channel. In addition, for practical code design of the system we study the pairwise error probabilities of the input sequences.
Resumo:
This short paper summarises findings of experiments that were carried out using copepod eggs taken from guts of Coregonus which breeds in various Ural lakes. The study showed that copepod eggs can pass through the gut of Coregonus unharmed.
Resumo:
A novel fiber Bragg grating (FBG) sensor system based on an interrogating technique by two parallel matched gratings was designed and theoretically discussed. With an interrogation grating playing the role of temperature compensation grating simultaneously, the wavelength drifts induced by temperature and strain were discriminated. Additionally, the expressions of temperature and strain were deduced for our solution, and dual-value problem and cross sensitivity were solved synchronously through data processing. The influence of the FBG's parameters on the dynamic range and precision was discussed. Besides, the change of environment temperature cannot influence the dynamic range of the sensor system through temperature tuning. The system proposed in this paper will be of great significance to accelerate the real engineering applications of FBG sensing techniques. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Pesquisa realizada em um Centro Integrado de Saúde inserido no âmbito de uma Instituição de Ensino Superior Particular, situada no Município do Rio de Janeiro. Metodologia fundamentada em uma abordagem quantitativa, não-experimental, apoiada na estatística inferencial descritiva, baseada no problema de estudo: Quais os fatores que caracterizam as condições de trabalho em um Centro Integrado de Saúde (CIS)? Teve como objetivo, analisar a visão dos trabalhadores em um Centro Integrado de Saúde acerca de suas condições de trabalho. Utilizou-se uma população constituída de 73 trabalhadores. Foram aplicados dois instrumentos: o caderno B, que consta de um questionário auto-aplicativo sobre Riscos e Danos e o caderno C que é um formulário de observação sobre as condições de trabalho de Mauro & Mauro (2009) adaptado de Boix e Vogel (1997). Os dados foram analisados através do Programa Statistical Package for the Social Sciences (SPSS) versão 13.0. Na visão dos trabalhadores, os resultados em relação aos riscos (físico, químico, biológico, ergonômico e de acidente) e considerando as variáveis desconhece, não acontece, raramente e freqüentemente, os mesmos indicaram uma freqüência diversificada, embora a maior incidência esteja no grupo de risco biológico com a variável freqüentemente e nos demais a variável raramente. Quanto aos problemas de saúde evidenciados, no questionário B em ordem decrescente, os que se destacaram foram os problemas oculares; lesão por acidente; varizes; dor de cabeça; hipertensão; doenças infecciosas; lombalgias; lesão da coluna vertebral; dores musculares crônicas; problemas de articulação e estresse. Quanto aos resultados do Caderno C, através de observação pelos especialistas, os riscos são variáveis, destacando-se os riscos ergonômicos, os de acidentes e os biológicos. Conclui-se que as condições de trabalho não são satisfatórias evidenciando-se a falta de conhecimento sobre o conteúdo da investigação, assinalados as respostas na alternativa (desconhece) e da aplicação correta das medidas de prevenção de riscos ocupacionais. Recomenda-se neste sentido uma incorporação institucional dos trabalhadores valorizando a capacitação desses profissionais de saúde, com ênfase na promoção da saúde, segurança, meio ambiente de trabalho e os conhecimentos de ergonomia. Como também uma atuação integrada do Serviço Especializado em Engenharia e em Medicina do Trabalho (SESMT) com a Comissão de Biossegurança, além do incentivo à gestão participativa, educação continuada efetiva, e a criação do Comitê de Ergonomia, para a análise e intervenção das propostas.
Resumo:
Phosphoglucose isomerase (PGI) catalyzes the reversible isomerization of glucose-6-phosphate and fructose-6-phosphate. It is involved in glycolysis and in the regeneration of glucose-6-P molecules in the oxidative pentose phosphate pathway (OPPP). In chloroplasts of illuminated mesophyll cells PGI also connects the Calvin-Benson cycle with the starch biosynthetic pathway. In this work we isolated pgi1-3, a mutant totally lacking pPGI activity as a consequence of aberrant intron splicing of the pPGI encoding gene, PGI1. Starch content in pgi1-3 source leaves was ca. 10-15% of that of wild type (WT) leaves, which was similar to that of leaves of pgi1-2, a T-DNA insertion pPGI null mutant. Starch deficiency of pgi1 leaves could be reverted by the introduction of a sex1 null mutation impeding beta-amylolytic starch breakdown. Although previous studies showed that starch granules of pgi1-2 leaves are restricted to both bundle sheath cells adjacent to the mesophyll and stomata guard cells, microscopy analyses carried out in this work revealed the presence of starch granules in the chloroplasts of pgi1-2 and pgi1-3 mesophyll cells. RT-PCR analyses showed high expression levels of plastidic and extra-plastidic beta-amylase encoding genes in pgi1 leaves, which was accompanied by increased beta-amylase activity. Both pgi1-2 and pgi1-3 mutants displayed slow growth and reduced photosynthetic capacity phenotypes even under continuous light conditions. Metabolic analyses revealed that the adenylate energy charge and the NAD(P) H/NAD(P) ratios in pgi1 leaves were lower than those of WT leaves. These analyses also revealed that the content of plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP)-pathway derived cytokinins (CKs) in pgi1 leaves were exceedingly lower than in WT leaves. Noteworthy, exogenous application of CKs largely reverted the low starch content phenotype of pgi1 leaves. The overall data show that pPGI is an important determinant of photosynthesis, energy status, growth and starch accumulation in mesophyll cells likely as a consequence of its involvement in the production of OPPP/glycolysis intermediates necessary for the synthesis of plastidic MEP-pathway derived hormones such as CKs.