799 resultados para Muscles
Resumo:
Studies were conducted to evaluate the quality aspects of marine dried fish i.e. silver jew fish (Johnius argentatus), Bombay duck (Harpodon nehereus) and ribbon fish (Trichiums haumela) products produced in rotating and solar tunnel dryers. On the basis of organoleptic characteristics such as colour, odour, texture, broken pieces, insect infestation and overall quality, four member panels of experts evaluated the quality of the dried products obtained from both rotating and solar tunnel dryers and all the products were found in acceptable quality. Reconstitutions properties of samples were in the range of 51.05 to 98.75% for the dried fish produced in rotating dryer, while 24.64 to 76.76% for dried fish produced in solar tunnel dryer. The highest reconstitution rate was found in dried silver jew fish and lowest in ribbon fish produced in rotating dryer. On the other hand, the highest reconstitution was observed in dried silver jew fish and lowest in dried Bombay duck produced in solar tunnel dryer. Proximate composition such as moisture, crude protein, lipid and ash content of the dried fish muscles produced in rotating dryer ranged from 16.36% to 19.1%, 62.35% to 67.37%, 6.37% to 10.75% and 7.00% to 8.05%, respectively and in solar tunnel dried fish products, they were in the range of 14.05% to 19.71%,57.64% to 69. 21%,6.92% to 15.40%and 7.69% to 8.80 %, respectively. The TVBN values of dried fish products obtained from rotating dryer were in the range of 15.02 to 19.05 mg/100g, while in solar tunnel dried fish products, the values were in the range of 15.46 to 19.21 mg/100g. The results of the studies indicated that dried fish produced from both rotating and solar tunnel drier were acceptable quality in terms of organoleptic and food quality aspects.
Resumo:
Seasonal changes taking place in the biochemical constituents of liver of G. mullya are reported. An inverse relationship was noticed in the variation of fat and water. Maximum fat contents were observed during june-july. Reserve fat was utilized through gluconeogenesis during the spawning months. Protein and glycogen percentages were comparatively higher in liver than in the muscles and gonads. Decline in the glycogen content was associated with spawning during July to November. Nutritive values have shown more energy contents in the liver during pre-spawning months.
Resumo:
Fat and water contents of the muscles and gonads in relation to gonad growth in Otolithus argentes from Karwar are reported. Water content showed an inverse relationship to lipid in both the sexes. Variation in somatic body weight was found associated with the fluctuations in lipid contents.
Resumo:
The contents of the heavy metals Fe, Zn, Cu, Mn, Pb, Cd and As were examined in the liver, heart, gills, kidney and muscles of the fish Clarias gariepinus from Eko-Ende dam in Ikirun, the capital of Ifelodun Local Government of Osun State, Nigeria. C. gariepinus is the fish of choice and the most demanded in the southwest of Nigeria. The highest metal concentrations were in the liver and the gills while the lowest was in the muscles. The general deceasing order of metal accumulation in the organs was Fe > Zn > Cu > Mn > Cd. Lead and arsenic were not detected in any organ. The values were of lower concentrations than found in many other dams and rivers in Nigeria and some other countries. The values were also lower than the FAO/WHO recommended maximum limits in fish samples, making the fish to be safe and not of any hazards for the consumers.
Resumo:
Homogenates of tissues have been analysed for the presence of 5'-nucleotidase activity. Sexes are not treated individually since no significant differences were observed. All organs showed marked activity, the highest being in the cardiac tissues, then the kidney, spleen, brain, and low values in the liver and muscles. Comparison with data from other fish studied shows a marked difference between O. striatus and O. punctatus.
Resumo:
The ablation technique consisted of making an incision across the eyeball to allow free flow of fluids while holding the prawn under water, squeezing the eyeball contents outwards, and pinching hard the eyestalk tissue. The cut area heals completely in about a week; no application of antibiotics is necessary. Spent spawners were tagged with thin brass rings (Rodriguez, 1976) around the unablated eyestalk for a separate experiment on rematuration. Two spawning yielding approximately 277,000 eggs were obtained three weeks after ablation, followed four days later by two more spawnings with 160,000 eggs; all four spawners weighed more than 100 g. With a hatching rate of 98% and 78% for the first and second batch, respectively, the spawnings produced viable nauplii. Water temperatures as low as 23 degree C due to a delayed cold spell in March depressed molting; weakened larvae had to be discharged at the mysis stage. Although ovarian development continued, no further spawnings were obtained due mainly to the onset of bacterial and fungal disease. Infection is initiated in injured portions of the exoskeleton, sometimes penetrating right through the muscles to the ovarian tissues. The non-flowthrough conditions and mussel meat feeding led to fouling of the culture water resulting in consecutive mortalities caused by disease. Female P.monodon held in maturation pens were ablated at the age of 15 months (Santiago, et al., 1976); they averaged only 16 g body weight after four months growth in ponds. In another experiment, pond-reared P.monodon females ranging from 50 to 80 g were ablated at approximately seven months (Aquacop, 1977). The present results show a minimum age of four months from postlarve that P.monodon is capable of ovarian development and spawning upon ablation. However, maturation is probably affected by size as well as age - the four-month old females weighed an average of 100 g in contrast to the smaller animals in the earlier experiments.
Resumo:
The goal of this work was to investigate stability in relation to the magnitude and direction of forces applied by the hand. The endpoint stiffness and joint stiffness of the arm were measured during a postural task in which subjects exerted up to 30% maximum voluntary force in each of four directions while controlling the position of the hand. All four coefficients of the joint stiffness matrix were found to vary linearly with both elbow and shoulder torque. This contrasts with the results of a previous study, which employed a force control task and concluded that the joint stiffness coefficients varied linearly with either shoulder or elbow torque but not both. Joint stiffness was transformed into endpoint stiffness to compare the effect on stability as endpoint force increased. When the joint stiffness coefficients were modeled as varying with the net torque at only one joint, as in the previous study, we found that hand position became unstable if endpoint force exceeded about 22 N in a specific direction. This did not occur when the joint stiffness coefficients were modeled as varying with the net torque at both joints, as in the present study. Rather, hand position became increasingly more stable as endpoint force increased for all directions of applied force. Our analysis suggests that co-contraction of biarticular muscles was primarily responsible for the increased stability. This clearly demonstrates how the central nervous system can selectively adapt the impedance of the arm in a specific direction to stabilize hand position when the force applied by the hand has a destabilizing effect in that direction.
Resumo:
This study compared adaptation in novel force fields where trajectories were initially either stable or unstable to elucidate the processes of learning novel skills and adapting to new environments. Subjects learned to move in a null force field (NF), which was unexpectedly changed either to a velocity-dependent force field (VF), which resulted in perturbed but stable hand trajectories, or a position-dependent divergent force field (DF), which resulted in unstable trajectories. With practice, subjects learned to compensate for the perturbations produced by both force fields. Adaptation was characterized by an initial increase in the activation of all muscles followed by a gradual reduction. The time course of the increase in activation was correlated with a reduction in hand-path error for the DF but not for the VF. Adaptation to the VF could have been achieved solely by formation of an inverse dynamics model and adaptation to the DF solely by impedance control. However, indices of learning, such as hand-path error, joint torque, and electromyographic activation and deactivation suggest that the CNS combined these processes during adaptation to both force fields. Our results suggest that during the early phase of learning there is an increase in endpoint stiffness that serves to reduce hand-path error and provides additional stability, regardless of whether the dynamics are stable or unstable. We suggest that the motor control system utilizes an inverse dynamics model to learn the mean dynamics and an impedance controller to assist in the formation of the inverse dynamics model and to generate needed stability.
Resumo:
This study investigated the neuromuscular mechanisms underlying the initial stage of adaptation to novel dynamics. A destabilizing velocity-dependent force field (VF) was introduced for sets of three consecutive trials. Between sets a random number of 4-8 null field trials were interposed, where the VF was inactivated. This prevented subjects from learning the novel dynamics, making it possible to repeatedly recreate the initial adaptive response. We were able to investigate detailed changes in neural control between the first, second and third VF trials. We identified two feedforward control mechanisms, which were initiated on the second VF trial and resulted in a 50% reduction in the hand path error. Responses to disturbances encountered on the first VF trial were feedback in nature, i.e. reflexes and voluntary correction of errors. However, on the second VF trial, muscle activation patterns were modified in anticipation of the effects of the force field. Feedforward cocontraction of all muscles was used to increase the viscoelastic impedance of the arm. While stiffening the arm, subjects also exerted a lateral force to counteract the perturbing effect of the force field. These anticipatory actions indicate that the central nervous system responds rapidly to counteract hitherto unfamiliar disturbances by a combination of increased viscoelastic impedance and formation of a crude internal dynamics model.
Resumo:
It has been shown that during arm movement, humans selectively change the endpoint stiffness of their arm to compensate for the instability in an unstable environment. When the direction of the instability is rotated with respect to the direction of movement, it was found that humans modify the antisymmetric component of their endpoint stiffness. The antisymmetric component of stiffness arises due to reflex responses suggesting that the subjects may have tuned their reflex responses as part of the feedforward adaptive control. The goal of this study was to examine whether the CNS modulates the gain of the reflex response for selective tuning of endpoint impedance. Subjects performed reaching movements in three unstable force fields produced by a robotic manipulandum, each field differing only in the rotational component. After subjects had learned to compensate for the field, allowing them to make unperturbed movements to the target, the endpoint stiffness of the arm was estimated in the middle of the movements. At the same time electromyographic activity (EMG) of six arm muscles was recorded. Analysis of the EMG revealed differences across force fields in the reflex gain of these muscles consistent with stiffness changes. This study suggests that the CNS modulates the reflex gain as part of the adaptive feedforward command in which the endpoint impedance is selectively tuned to overcome environmental instability. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
Green tiger prawn, Penaeus sentisulcatus is one of the commercial species of Persian Gulf, which is distributed from north to Strait of I Iormoze. Concerning its role in fisheries economic, various research projects on stock assessment, biology and aquaculture has been conducted. This research is targeted the identification of various populations of green tiger prawn in northern waters of Persian Gulf. The area has been divided to five regions from north to south named; Bahrakan, Boushehr, Tangestan, Motaaf and Strait of Hormoz. In each region, numbers of sampling stations trawled, and live shrimp species carried in containers equipped with air pump, to coastal laboratories in Boushehr and Bandar Abbass Fisheries Research Centers. Biometeric, morphometeric and merestic measures for 45 factars done, and peices of muscles, eye and ovary tissues dissected, and stored in liquid nitrogen. Protein extraction, and polyacrylamid gel electrophoresis by SDS-PAGE technique for tissues samples conducted. Data of 45 morphometeric and merestic characteristics analyzed by principal component analysis (PCA), and clustering analysis methods. The results of analysis showed that, the populations of Bahrakan and Mota.af regions are differentiated, while population of Boushehr and Tangestan regions were mixed, and named as a single population. The analysis of electrophoretic data also confirmed this result, and showed a distinct population in Strait of Hormoz. Therefore, this research illustrated four distinct populations for P. semisulcatus in northern area of Persian Gulf, named Bahrakan (north of Boushehr), Boushehr and Tangesta.n (adjacent), Motaaf and it's south, and Strait of Hormoz. Study of morphometeric characteristics of carapace factors, genital organs, antenna and life cycle of samples of different regions resulting identification of a subspecies, which is named Penaeus seinisuleatus persicus.
Resumo:
Humans are able to learn tool-handling tasks, such as carving, demonstrating their competency to make movements in unstable environments with varied directions. When faced with a single direction of instability, humans learn to selectively co-contract their arm muscles tuning the mechanical stiffness of the limb end point to stabilize movements. This study examines, for the first time, subjects simultaneously adapting to two distinct directions of instability, a situation that may typically occur when using tools. Subjects learned to perform reaching movements in two directions, each of which had lateral instability requiring control of impedance. The subjects were able to adapt to these unstable interactions and switch between movements in the two directions; they did so by learning to selectively control the end-point stiffness counteracting the environmental instability without superfluous stiffness in other directions. This finding demonstrates that the central nervous system can simultaneously tune the mechanical impedance of the limbs to multiple movements by learning movement-specific solutions. Furthermore, it suggests that the impedance controller learns as a function of the state of the arm rather than a general strategy. © 2011 the American Physiological Society.
Resumo:
The technique presented in this paper enables a simple, accurate and unbiased measurement of hand stiffness during human arm movements. Using a computer-controlled mechanical interface, the hand is shifted relative to a prediction of the undisturbed trajectory. Stiffness is then computed as the restoring force divided by the position amplitude of the perturbation. A precise prediction algorithm insures the measurement quality. We used this technique to measure stiffness in free movements and after adaptation to a linear velocity dependent force field. The subjects compensated for the external force by co-contracting muscles selectively. The stiffness geometry changed with learning and stiffness tended to increase in the direction of the external force.
Resumo:
Although musculoskeletal models are commonly used, validating the muscle actions predicted by such models is often difficult. In situ isometric measurements are a possible solution. The base of the skeleton is immobilized and the endpoint of the limb is rigidly attached to a 6-axis force transducer. Individual muscles are stimulated and the resulting forces and moments recorded. Such analyses generally assume idealized conditions. In this study we have developed an analysis taking into account the compliances due to imperfect fixation of the skeleton, imperfect attachment of the force transducer, and extra degrees of freedom (dof) in the joints that sometimes become necessary in fixed end contractions. We use simulations of the rat hindlimb to illustrate the consequences of such compliances. We show that when the limb is overconstrained, i.e., when there are fewer dof within the limb than are restrained by the skeletal fixation, the compliances of the skeletal fixation and of the transducer attachment can significantly affect measured forces and moments. When the limb dofs and restrained dofs are matched, however, the measured forces and moments are independent of these compliances. We also show that this framework can be used to model limb dofs, so that rather than simply omitting dofs in which a limb does not move (e.g., abduction at the knee), the limited motion of the limb in these dofs can be more realistically modeled as a very low compliance. Finally, we discuss the practical implications of these results to experimental measurements of muscle actions.
Resumo:
The metallothionein-2 (MT-2) gene was isolated from the mandarin fish, one of the most important industrial aquatic animals in China, by using rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of MT-2 comprised 60 amino acids and showed approximately 62.3% identity to human metallothionein. Its promoter region was amplified by thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR). The MT-2 gene consists of 3 exons and 2 introns, extending approximately 900 bp of genomic sequence. Phylogenetic analysis clearly demonstrated that MT-2 formed a clade with fish metallothionein. The promoter region contained 5 putative metal-regulatory elements (MREs) and 1 TATA box. Real-time quantitative RT-PCR analysis revealed that MT-2 transcripts were significantly increased in the brain and gills and were stable in the muscles, liver, and trunk kidney in Cd2+-stimulated fish. Western blotting analysis demonstrated that the protein of the MT-2 gene was expressed mainly in the gills, liver, heart, trunk kidney, muscle, and intestine; it was weakly detected in the brain and head kidney. Moreover, the MT-2 protein was immunohistochemically detected in the cytoplasm in the liver and trunk kidney. All the above results revealed that the mandarin fish MT-2 would be a useful biomarker for metal pollution. (C) 2008 Published by Elsevier Inc.