963 resultados para Multiple primary tumors
Resumo:
Malignant rhabdoid tumor (MRT) of the liver is a rare malignancy with grave prognosis. This entity should be considered in the differential diagnosis of any aggressive liver tumor with low levels of alpha fetoprotein. We report 2 cases of hepatic MRT presenting in infancy. In these 2 cases, we show that loss of INI1 facilitates making the correct diagnosis of primary hepatic MRT utilizing BAF 47 (INI1 gene product) immunostains. Difficulty encountered in making this rare diagnosis, including the need for repeated biopsies, can be avoided if MRT is considered in the differential diagnosis early on and BAF 47 immunohistochemistry is ordered.
Resumo:
Tumour cells with a stem cell-like phenotype have recently been identified in prostate tumors and it has been suggested that this population may be responsible for the diversity of cell types within tumors and also for the initiation of metastases. These cells carry a number of defined markers: they are cd133 and cd44+ve and express high levels of alpha2beta1 integrin. In this study we have, for the first time, assessed matched primary and bone marrow biopsies from prostate cancer patients for the distribution of cells carrying these and a number of other putative stem cell markers.
Resumo:
Rats affected by the MENX multitumor syndrome develop pheochromocytoma (100%). Pheochromocytomas are uncommon tumors and animal models are scarce, hence the interest in MENX rats to identify and preclinically evaluate novel targeted therapies. A prerequisite for such studies is a sensitive and noninvasive detection of MENXassociated pheochromocytoma. We performed positron emission tomography (PET) to determine whether rat pheochromocytomas are detected by tracers used in clinical practice, such as 68Ga-DOTATOC (somatostatin analogue) or (11)C-Hydroxyephedrine (HED), a norepinephrine analogue. We analyzed four affected and three unaffected rats. The PET scan findings were correlated to histopathology and immunophenotype of the tumors, their proliferative index, and the expression of genes coding for somatostatin receptors or the norepinephrine transporter. We observed that mean 68Ga-DOTATOC standard uptake value (SUV) in adrenals of affected animals was 23.3 ± 3.9, significantly higher than in control rats (15.4 ± 7.9; P = .03). The increase in mean tumor-to-liver ratio of (11)C-HED in the MENX-affected animals (1.6 ± 0.5) compared to controls (0.7 ± 0.1) was even more significant (P = .0016). In a unique animal model, functional imaging depicting two pathways important in pheochromocytoma biology discriminated affected animals from controls, thus providing the basis for future preclinical work with MENX rats.
Resumo:
Statins have anti-inflammatory and immunomodulatory properties in addition to lipid-lowering effects. The present study evaluated the effect of atorvastatin added to interferon beta-1b in multiple sclerosis (MS) in a multicenter, randomized, parallel-group, rater-blinded study performed in eight Swiss hospitals. Seventy-seven patients with relapsing-remitting MS started interferon beta-1b every other day. After 3 months, they were randomized 1:1 to receive atorvastatin 40 mg/day or not in addition to interferon beta-1b until month 15. The primary endpoint was the proportion of patients with new lesions on T2-weighted images at month 15 compared to baseline at month three. At study end, the proportion of patients with new lesions on T2-weighted images was equal in both groups (odds ratio 1.14; 95 % CI 0.36-3.56; p = 0.81). All predefined secondary endpoints including number of new lesions and total lesion volume on T2-weighted images, total number of new Gd-enhancing lesions on T1-weighted images, total brain volume, volume of grey matter, volume of white matter, EDSS, MSFC, relapse rate, time to first relapse, number of relapse-free patients and neutralizing antibodies did not show any significant differences (all p values >0.1). Transient elevations of liver enzymes were more frequent with atorvastatin (p = 0.02). In conclusion, atorvastatin 40 mg/day in addition to interferon beta-1b did not have a beneficial effect on relapsing-remitting MS compared to interferon beta-1b monotherapy over a 12-month period.
Resumo:
Hemorrhage and traumatic coagulopathyis are major causes of early death in multiply injured patients. Thrombelastography (TEG) seems to be a fast and accurate coagulation test in trauma care. We suggest that multiply injured trauma patients would benefit the most from an early assessment of coagulation by TEG, mainly RapidTEG, to detect an acute traumatic coagulopathy and especially primary fibrinolysis, which is related with high mortality. This review gives an overview on TEG and its clinical applications.
Resumo:
By analogy to gliosarcoma, the neologism "oligosarcoma" is to describe an uncommon form of biphasic central nervous system tumor composed of contiguous neuroepithelial and mesenchymal elements, each of which individually meet the criteria of oligodendroglioma and sarcoma, respectively. By virtue of its distinctive genotype (codeletion 1p/19q), oligodendroglioma is a particularly inviting paradigm to test the assumption that such mixed tumors are clonally derived from a glial primary. We observed this constellation in a 41-year-old male who underwent two resection procedures for a recurring right frontal tumor at five years' interval. On imaging, both lesions were contrast-enhancing, and measured 7 cm × 7 cm × 6.8 cm and 7 cm × 6.5 cm × 4cm, respectively. Following the first operation, temozolomide monotherapy was administered. Whereas initial histology showed conventional anaplastic oligodendroglioma, the recurrence consisted mostly of a fibrosarcoma-like, fascicular neoplasm that was immunoreactive for vimentin, smooth muscle actin, S100 protein, and focally epithelial membrane antigen. In between, a subset of otherwise indistinguishable spindle cells expressed GFAP, and focally merged with residues of oligodendroglioma. Molecular testing for loss of heterozygosity confirmed codeletion of 1p/19q in both the primary tumor and the sarcomatous recurrence. Similarly, generalized immunoreactivity for the mutant R132H form of isocitrate dehydrogenase in both lesions indicated an identical mutation of the IDH1 gene. By the above standards, biologically consistent "oligosarcomas" are felt to be exceedingly rare, and possibly participate of a nosologically heterogeneous group of combined glial/mesenchymal lesions that may also include iatrogenically induced second malignancies as well as true collision tumors.
Resumo:
The secretin receptor (SR), a G protein-coupled receptor, mediates the effects of the gastrointestinal hormone secretin on digestion and water homeostasis. Recently, high SR expression has been observed in pancreatic ductal adenocarcinomas, cholangiocellular carcinomas, gastrinomas, and bronchopulmonary carcinoid tumors. Receptor overexpression associates with enhanced secretin-mediated signaling, but whether this molecule plays an independent role in tumorigenesis is currently unknown. We recently discovered that pheochromocytomas developing in rats affected by the MENX (multiple endocrine neoplasia-like) syndrome express at very high-level Sctr, encoding SR. We here report that SR are also highly abundant on the membranes of rat adrenal and extraadrenal pheochromocytoma, starting from early stages of tumor development, and are functional. PC12 cells, the best characterized in vitro pheochromocytoma model, also express Sctr at high level. Thus, we used them as model to study the role of SR in neoplastic transformation. Small interfering RNA-mediated knockdown of Sctr decreases PC12 cells proliferation and increases p27 levels. The proproliferative effect of SR in PC12 cells is mediated, in part, by the phosphatidylinositol 3 kinase (PI3K)/serine-threonine protein kinase (AKT) pathway. Transfection of Sctr in Y1 adrenocortical carcinoma cells, expressing low endogenous levels of Sctr, stimulates cell proliferation also, in part, via the PI3K/AKT signaling cascade. Because of the link between SR and PI3K/AKT signaling, tumor cells expressing high levels of the receptor (MENX-associated primary pheochromocytoma and NCI-H727 human bronchopulmonary carcinoid cells) respond well and in a SR-dependent manner to PI3K inhibitors, such as NVP-BEZ235. The association between SR levels and response to PI3K inhibition might open new avenues for the treatment of tumors overexpressing this receptor.
Resumo:
Alterations of the epidermal growth factor receptor (EGFR) can be observed in a significant subset of esophageal adenocarcinomas (EACs), and targeted therapy against EGFR may become an interesting approach for the treatment of these tumors. Mutations of KRAS, NRAS, BRAF, and phosphatidylinositol-3-kinase catalytic subunit (PIK3CA) and deregulation of PTEN expression influence the responsiveness against anti-EGFR therapy in colorectal carcinomas. We investigated the prevalence of these events in a collection of 117 primary resected EACs, correlated the findings with EGFR expression and amplification, and determined their clinicopathologic impact. KRAS mutations were detected in 4 (3%) of 117 tumors (3× G12D and 1 G12V mutation). One tumor had a PIK3CA E545K mutation. Neither NRAS nor BRAF mutations were detected. Sixteen (14%) of 117 cases were negative for PTEN expression, determined by immunohistochemistry. Loss of PTEN was observed predominantly in advanced tumor stages (P = .004). There was no association between PTEN and EGFR status. Loss of PTEN was associated with shorter overall and disease-free survival (P < .001 each) and also an independent prognostic factor in multivariate analysis (P = .015). EGFR status had no prognostic impact in this case collection. In summary, loss of PTEN can be detected in a significant subset of EAC and is associated with an aggressive phenotype. Therefore, PTEN may be useful as a prognostic biomarker. In contrast, mutations of RAS/RAF/PIK3CA appear only very rarely, if at all, in EAC. A possible predictive role of PTEN in anti-EGFR treatment warrants further investigations, whereas determination of RAS/RAF/PIK3CA mutations may only have a minor impact in this context.
Resumo:
Background For reliable assessment of ventilation inhomogeneity, multiple-breath washout (MBW) systems should be realistically validated. We describe a new lung model for in vitro validation under physiological conditions and the assessment of a new nitrogen (N2)MBW system. Methods The N2MBW setup indirectly measures the N2 fraction (FN2) from main-stream carbon dioxide (CO2) and side-stream oxygen (O2) signals: FN2 = 1−FO2−FCO2−FArgon. For in vitro N2MBW, a double chamber plastic lung model was filled with water, heated to 37°C, and ventilated at various lung volumes, respiratory rates, and FCO2. In vivo N2MBW was undertaken in triplets on two occasions in 30 healthy adults. Primary N2MBW outcome was functional residual capacity (FRC). We assessed in vitro error (√[difference]2) between measured and model FRC (100–4174 mL), and error between tests of in vivo FRC, lung clearance index (LCI), and normalized phase III slope indices (Sacin and Scond). Results The model generated 145 FRCs under BTPS conditions and various breathing patterns. Mean (SD) error was 2.3 (1.7)%. In 500 to 4174 mL FRCs, 121 (98%) of FRCs were within 5%. In 100 to 400 mL FRCs, the error was better than 7%. In vivo FRC error between tests was 10.1 (8.2)%. LCI was the most reproducible ventilation inhomogeneity index. Conclusion The lung model generates lung volumes under the conditions encountered during clinical MBW testing and enables realistic validation of MBW systems. The new N2MBW system reliably measures lung volumes and delivers reproducible LCI values.
Resumo:
The human gene deleted in malignant brain tumors 1 (DMBT1) is considered to play a role in tumorigenesis and pathogen defense. It encodes a protein with multiple scavenger receptor cysteine-rich (SRCR) domains, which are involved in recognition and binding of a broad spectrum of bacterial pathogens. The SRCR domains are encoded by highly homologous repetitive exons, whose number in humans may vary from 8 to 13 due to genetic polymorphism. Here, we characterized the porcine DMBT1 gene on the mRNA and genomic level. We assembled a 4.5 kb porcine DMBT1 cDNA sequence from RT-PCR amplified seminal vesicle RNA. The porcine DMBT1 cDNA contains an open reading frame of 4050 nt. The transcript gives rise to a putative polypeptide of 1349 amino acids with a calculated mass of 147.9 kDa. Compared to human DMBT1, it contains only four N-terminal SRCR domains. Northern blotting revealed transcripts of approximately 4.7 kb in size in the tissues analyzed. Analysis of ESTs suggested the existence of secreted and transmembrane variants. The porcine DMBT1 gene spans about 54 kb on chromosome 14q28-q29. In contrast to the characterized cDNA, the genomic BAC clone only contained 3 exons coding for N-terminal SRCR domains. In different mammalian DMBT1 orthologs large interspecific differences in the number of SRCR exons and utilization of the transmembrane exon exist. Our data suggest that the porcine DMBT1 gene may share with the human DMBT1 gene additional intraspecific variations in the number of SRCR-coding exons.
Resumo:
PURPOSE: To compare adjuvant dose-intensive epirubicin and cyclophosphamide chemotherapy administered with filgrastim and progenitor cell support (DI-EC) with standard-dose anthracycline-based chemotherapy (SD-CT) for patients with early-stage breast cancer and a high risk of relapse, defined as stage II disease with 10 or more positive axillary nodes; or an estrogen receptor-negative or stage III tumor with five or more positive axillary nodes. PATIENTS AND METHODS: Three hundred forty-four patients were randomized after surgery to receive seven cycles of SD-CT over 22 weeks, or three cycles of DI-EC (epirubicin 200 mg/m2 plus cyclophosphamide 4 gm/m2 with filgrastim and progenitor cell support) over 6 weeks. All patients were assigned tamoxifen at the completion of chemotherapy. The primary end point was disease-free survival (DFS). RESULTS: After a median follow-up of 5.8 years (range, 3 to 8.4 years), 188 DFS events had occurred (DI-EC, 86 events; SD-CT, 102 events). The 5-year DFS was 52% for DI-EC and 43% for SD-CT, with hazard ratio of DI-EC compared with SD-CT of 0.77 (95% CI, 0.58 to 1.02; P = .07). The 5-year overall survival was 70% for DI-EC and 61% for SD-CT, with a hazard ratio of 0.79 (95% CI, 0.56 to 1.11; P = .17). There were eight cases (5%) of anthracycline-induced cardiomyopathy (two fatal) among those who received DI-EC. Women with hormone receptor-positive tumors benefited significantly from DI-EC. CONCLUSION: There was a trend in favor of DI-EC with respect to disease-free survival. A larger trial or meta-analysis will be required to reveal the true effect of dose-intensive therapy.
Resumo:
Imatinib mesylate (imatinib) is a potent inhibitor of defined tyrosine kinases (TKs) and is effective in the treatment of malignancies characterized by constitutive activation of these TKs such as chronic myeloid leukemia and gastrointestinal stromal tumors. TKs also play an important role in T-cell receptor (TCR) signal transduction. Inhibitory as well as stimulating effects of imatinib on T cells and dendritic cells have been described. Here, we analyzed the effects of imatinib treatment on antiviral immune responses in vivo. Primary cytotoxic T-cell (CTL) responses were not impaired in imatinib-treated mice after infection with lymphocytic choriomeningitis virus (LCMV) or after immunization with a tumor cell line expressing LCMV glycoprotein (LCMV-GP). Similarly, neutralizing antibody responses to vesicular stomatitis virus (VSV) were not affected. In contrast, secondary expansion of LCMV-specific memory CTLs was reduced in vitro and in vivo, resulting in impaired protection against reinfection. In addition, imatinib treatment delayed the onset of diabetes in a CTL-induced diabetes model. In summary, imatinib treatment in vivo selectively inhibits the expansion of antigen-experienced memory CTLs without affecting primary T- or B-cell responses. Therefore, imatinib may be efficacious in the suppression of CTL-mediated immunopathology in autoimmune diseases without the risk of acquiring viral infections.
Resumo:
OBJECTIVE: To compare the effects of intravenous methylprednisolone (IVMP) in patients with relapsing-remitting (RR-MS), secondary progressive (SP-MS), and primary progressive multiple sclerosis (PP-MS). METHODS: Clinical and neurophysiological follow up was undertaken in 24 RR-MS, eight SP-MS, and nine PP-MS patients receiving Solu-Medrol 500 mg/d over five days for exacerbations involving the motor system. Motor evoked potentials (MEPs) were used to measure central motor conduction time (CMCT) and the triple stimulation technique (TST) was applied to assess conduction deficits. The TST allows accurate quantification of the number of conducting central motor neurones, expressed by the TST amplitude ratio. RESULTS: There was a significant increase in TST amplitude ratio in RR-MS (p<0.001) and SP-MS patients (p<0.02) at day 5, paralleling an increase in muscle force. TST amplitude ratio and muscle force remained stable at two months. In PP-MS, TST amplitude ratio and muscle force did not change. CMCT did not change significantly in any of the three groups. CONCLUSIONS: In RR-MS and SP-MS, IVMP is followed by a prompt increase in conducting central motor neurones paralleled by improvement in muscle force, which most probably reflects partial resolution of central conduction block. The lack of similar clinical and neurophysiological changes in PP-MS corroborates previous clinical reports on limited IVMP efficacy in this patient group and points to pathophysiological differences underlying exacerbations in PP-MS.
Resumo:
In this paper, we focus on the model for two types of tumors. Tumor development can be described by four types of death rates and four tumor transition rates. We present a general semi-parametric model to estimate the tumor transition rates based on data from survival/sacrifice experiments. In the model, we make a proportional assumption of tumor transition rates on a common parametric function but no assumption of the death rates from any states. We derived the likelihood function of the data observed in such an experiment, and an EM algorithm that simplified estimating procedures. This article extends work on semi-parametric models for one type of tumor (see Portier and Dinse and Dinse) to two types of tumors.
Resumo:
BACKGROUND: Treatment with (90)Y- or (177)Lu-DOTATOC has recently been introduced in the palliative treatment of somatostatin receptor-expressing neuroendocrine tumors (NETs). The aim of the study was to present clinical experience with (90)Y- and (177)Lu-DOTATOC therapy in the management of NET. METHODS: To prove suitability for treatment each patient underwent scanning with (111)In-DTPAOC or (68)Ga-DOTATOC positron emission tomography/computed tomography. All patients received [(90)Y-DOTATOC] as initial treatment. In case of disease relapse the treatment was repeated. To avoid side effects of repeated [(90)Y] applications, a switch to [(177)Lu-DOTATOC] was carried out. Clinical, biochemical, and radioimaging responses were documented. RESULTS: Twenty patients with metastatic nonresectable NETs (15 pancreas NETs, 2 midgut NETs, 1 gastrinoma, 1 paraganglioma, 1 NET of unknown primary origin) were included. In 8 patients the treatment was repeated more than once (mean, 3 times; range, 2-5 times). After [(90)Y] treatment moderate toxicity was observed in 8 patients. No serious adverse events were documentable. After restaging, a partial remission was found in 5 patients, stable disease in 11 patients, and tumor progression in 4 patients. CONCLUSIONS: Peptide receptor-targeted radionuclide therapy is a promising, safe, and feasible approach in the palliative therapy of patients with NET.