944 resultados para Multiantenna arrays
Resumo:
Abstract : Transcriptional regulation is the result of a combination of positive and negative effectors, such as transcription factors, cofactors and chromatin modifiers. During my thesis project I studied chromatin association, and transcriptional and cell cycle regulatory functions of dHCF, the Drosophila homologue of the human protein HCF-1 (host cell factor-1). The human and Drosophila HCF proteins are synthesized as large polypeptides that are cleaved into two subunits (HCFN and HCFC), which remain associated with one another by non covalent interactions. Studies in mammalian cells over the past 20 years have been devoted to understanding the cellular functions of HCF-1 and have revealed that it is a key regulator of transcription and cell cycle regulation. In human cells, HCF-1 interacts with the histone methyltransferase Set1/Ash2 and MLL/Ash2 complexes and the histone deacetylase Sin3 complex, which are involved in transcriptional activation and repression, respectively. HCF-1 is also recruited to promoters to regulate G1 -to-S phase progression during the cell cycle by the activator transcription factors E2F1 and E2F3, and by the repressor transcription factor E2F4. HCF-1 protein structure and these interactions between HCP-1 and E2F transcriptional regulator proteins are also conserved in Drosophila. In this doctoral thesis, I use proliferating Drosophila SL2 cells to study both the genomic-binding sites of dHCF, using a combination of chromatin immunoprecipitation and ultra high throughput sequencing (ChIP-seq) analysis, and dHCF regulated genes, employing RNAi and microarray expression analysis. I show that dHCF is bound to over 7500 chromosomal sites in proliferating SL2 cells, and is located at +-200 bp relative to the transcriptional start sites of about 30% of Drosophila genes. There is also a direct relationship between dHCF promoter association and promoter- associated transcriptional activity. Thus, dHCF binding levels at promoters correlated directly with transcriptional activity. In contrast, expression studies showed that dHCF appears to be involved in both transcriptional activation and repression. Analysis of dHCF-binding sites identified nine dHCF-associated motifs, four of them linked dHCF to (i) two insulator proteins, GAGA and BEAF, (ii) the E-box motif, and (iii) a degenerated TATA-box. The dHCF-associated motifs allowed the organization of the dHCF-bound genes into five biological processes: differentiation, cell cycle and gene expression, regulation of endocytosis, and cellular localization. I further show that different mechanisms regulate dHCF association with chromatin. Despite that after dHCF cleavage the dHCFN and dHCFC subunits remain associated, the two subunits showed different affinities for chromatin and differential binding to a set of tested promoters, suggesting that dHCF could target specific promoters through each of the two subunits. Moreover, in addition to the interaction between dHCF and E2F transcription factors, the dHCF binding pattern is correlated with dE2F2 genomic 4 distribution. I show that dE2F factors are necessary for recruitment of dHCF to the promoter of a set of dHCF regulated genes. Therefore dHCF, as in mammals, is involved in regulation of G1 to S phase progression in collaboration with the dE2Fs transcription factors. In addition, gene expression arrays reveal that dHCF could indirectly regulate cell cycle progression by promoting expression of genes involved in gene expression and protein synthesis, and inhibiting expression of genes involved in cell-cell adhesion. Therefore, dHCF is an evolutionary conserved protein, which binds to many specific sites of the Drosophila genome via interaction with DNA of chromatin-binding proteins to regulate the expression of genes involved in many different cellular functions. Résumé : La regulation de la transcription est le résultat des effets positifs et négatifs des facteurs de transcription, cofacteurs et protéines effectrices qui modifient la chromatine. Pendant mon projet de thèse, j'ai étudié l'association a la chromatine, ainsi que la régulation de la transcription et du cycle cellulaire par dHCF, l'homologue chez la drosophile de la protéine humaine HCF-1 (host cell factor-1). Chez 1'humain et la V drosophile, les deux protéines HCF sont synthétisées sous la forme d'un long polypeptide, qui est ensuite coupé en deux sous-unités au centre de la protéine. Les deux sous-unités restent associées ensemble grâce a des interactions non-covalentes. Des études réalisées pendant les 20 dernières années ont permit d'établir que HCF-l et un facteur clé dans la régulation de la transcription et du cycle cellulaire. Dans les cellules humaines, HCF-1 active et réprime la transcription en interagissant avec des complexes de protéines qui activent la transcription en méthylant les histones (HMT), comme par Set1/Ash2 et MLL/Ash2, et d'autres complexes qui répriment la transcription et sont responsables de la déacétylation des histones (HDAC) comme la protéine Sin3. HCF-l est aussi recruté aux promoteurs par les activateurs de la transcription E2F l et E2F3a, et par le répresseur de la transcription E2F4 pour réguler la transition entre les phases G1 et S du cycle cellulaire. La structure de HCF-1 et les interactions entre HCF-l et les régulateurs de la transcription sont conservées chez la drosophile. Pendant ma these j'ai utilisé les cellules de la drosophile, SL2 en culture, pour étudier les endroits de liaisons de HCF-l à la chromatine, grâce a immunoprecipitation de la chromatine et du séquençage de l'ADN massif ainsi que les gènes régulés par dHCF 3 grâce a la technique de RNAi et des microarrays. Mes résultats on montré que dHCF se lie à environ 7565 endroits, et estimé a 1200 paire de bases autour des sites d'initiation de la transcription de 30% des gènes de la drosophile. J 'ai observe une relation entre dHCF et le niveau de la transcription. En effet, le niveau de liaison dHCF au promoteur corrèle avec l'activité de la transcription. Cependant, mes études d'expression ont montré que dHCF est implique dans le processus d'activation et mais aussi de répression de la transcription. L'analyse des séquences d'ADN liées par dHCF a révèle neuf motifs, quatre de ces motifs ont permis d'associer dl-ICF a deux protéines isolatrices GAGA et BEAF, au motif pour les E-boxes et a une TATA-box dégénérée. Les neuf motifs associes à dHCF ont permis d'associer les gènes lies par dHCF au promoteur a cinq processus biologiques: différentiation, cycle cellulaire, expression de gènes, régulation de l'endocytosis et la localisation cellulaire, J 'ai aussi montré qu'il y a plusieurs mécanismes qui régulent l'association de dHCF a la chromatine, malgré qu'après clivage, les deux sous-unites dHCFN and dHCFC, restent associées, elles montrent différentes affinités pour la chromatine et lient différemment un group de promoteurs, les résultats suggèrent que dHCF peut se lier aux promoteurs en utilisant chacune de ses sous-unitées. En plus de l'association de dHCF avec les facteurs de transcription dE2F s, la distribution de dHCF sur le génome corrèle avec celle du facteur de transcription dE2F2. J'ai aussi montré que les dE2Fs sont nécessaires pour le recrutement de dHCF aux promoteurs d'un sous-groupe de gènes régules par dHCF. Mes résultats ont aussi montré que chez la drosophile comme chez les humains, dl-ICF est implique dans la régulation de la progression de la phase G1 a la phase S du cycle cellulaire en collaboration avec dE2Fs. D'ailleurs, les arrays d'expression ont suggéré que dHCF pourrait réguler le cycle cellulaire de façon indirecte en activant l'expression de gènes impliqués dans l'expression génique et la synthèse de protéines, et en inhibant l'expression de gènes impliqués dans l'adhésion cellulaire. En conclusion, dHCF est une protéine, conservée dans l'évolution, qui se lie spécifiquement a beaucoup d'endroits du génome de Drosophile, grâce à l'interaction avec d'autres protéines, pour réguler l'expression des gènes impliqués dans plusieurs fonctions cellulaires.
Resumo:
We consider noncentered vortices and their arrays in a cylindrically trapped Bose-Einstein condensate at zero temperature. We study the kinetic energy and the angular momentum per particle in the Thomas-Fermi regime and their dependence on the distance of the vortices from the center of the trap. Using a perturbative approach with respect to the velocity field of the vortices, we calculate, to first order, the frequency shift of the collective low-lying excitations due to the presence of an off-center vortex or a vortex array, and compare these results with predictions that would be obtained by the application of a simple sum-rule approach, previously found to be very successful for centered vortices. It turns out that the simple sum-rule approach fails for off-centered vortices.
Resumo:
In this study, we have performed magneto-optical Kerr effect (MOKE) measurement on epitaxial La2/3Sr1/3MnO3 thin films containing artificial interfaces created by laser-patterning the SrTiO3 substrate. The observed increase of the resistivity and of the high-field magnetoresistance when measuring the films across the interface arrays are related to the reduction of the magnetization of the interfaces with respect to the rest of the film. As observed by the local MOKE probe, the structural disorder in the manganite film induced by the underlying patterned substrate leads to a large spin disorder responsible for a strong high-field susceptibility of the resistance.
Resumo:
We explore the statistical properties of grain boundaries in the vortex polycrystalline phase of type-II superconductors. Treating grain boundaries as arrays of dislocations interacting through linear elasticity, we show that self-interaction of a deformed grain boundary is equivalent to a nonlocal long-range surface tension. This affects the pinning properties of grain boundaries, which are found to be less rough than isolated dislocations. The presence of grain boundaries has an important effect on the transport properties of type-II superconductors as we show by numerical simulations: our results indicate that the critical current is higher for a vortex polycrystal than for a regular vortex lattice. Finally, we discuss the possible role of grain boundaries in vortex lattice melting. Through a phenomenological theory we show that melting can be preceded by an intermediate polycrystalline phase.
Resumo:
Magnetic properties of Fe nanodots are simulated using a scaling technique and Monte Carlo method, in good agreement with experimental results. For the 20-nm-thick dots with diameters larger than 60¿nm, the magnetization reversal via vortex state is observed. The role of magnetic interaction between dots in arrays in the reversal process is studied as a function of nanometric center-to-center distance. When this distance is more than twice the dot diameter, the interaction can be neglected and the magnetic properties of the entire array are determined by the magnetic configuration of the individual dots. The effect of crystalline anisotropy on the vortex state is investigated. For arrays of noninteracting dots, the anisotropy strongly affects the vortex nucleation field and coercivity, and only slightly affects the vortex annihilation field
Resumo:
The objective of this study was to develop guidelines for use of the Iowa Vanes technique for sediment control in bridge waterways. Iowa Vanes are small flow-training structures (foils) designed to modify the near-bed flow pattern and redistribute flow and sediment transport within the channel cross section. The structures are installed at an angleof attack of 15 - 25' with the flow, and their initial height is 0.2 - 0.5 times water depth at design stage. The vanes function by generating secondary circulation in the flow. The circulation alters magnitude and direction of the bed shear stress and causes a reduction in velocity and sediment transport in the vane controlled area. As a result, the river bed aggrades in the vane controlled area and degrades outside. This report summarizes the basic theory, describes results of laboratory and field tests, and presents the resulting design procedure. Design graphs have been developed based on the theory. The graphs are entered with basic flow variables and desired bed topography. The output is vane layout and design. The procedure is illustrated with two numerical examples prepared with data that are typical for many rivers in Iowa and the midwest. The report also discusses vane material. In most applications, the vane height will be between 30% and 50% of bankfull flow depth and the vane length will be two to three times vane height. The vanes will be placed in arrays along the bank of the river. Each array will contain two or more vanes. The vanes in an array will be spaced laterally a distance of two to three times vane height. The streamwise spacing between the arrays will be 15 to 30 times vane height, and the vane-to-bank distance will be three to four times vane height. The study also show that the first (most upstream) array in the vane system must be located a distance of at least three array spacings upstream from the bridge, and there must be at least three arrays in the system for it to be effective at and downstream from the third array.
Resumo:
Fekete points are the points that maximize a Vandermonde-type determinant that appears in the polynomial Lagrange interpolation formula. They are well suited points for interpolation formulas and numerical integration. We prove the asymptotic equidistribution of Fekete points in the sphere. The way we proceed is by showing their connection to other arrays of points, the so-called Marcinkiewicz-Zygmund arrays and interpolating arrays, that have been studied recently.
Resumo:
Abstract : The human body is composed of a huge number of cells acting together in a concerted manner. The current understanding is that proteins perform most of the necessary activities in keeping a cell alive. The DNA, on the other hand, stores the information on how to produce the different proteins in the genome. Regulating gene transcription is the first important step that can thus affect the life of a cell, modify its functions and its responses to the environment. Regulation is a complex operation that involves specialized proteins, the transcription factors. Transcription factors (TFs) can bind to DNA and activate the processes leading to the expression of genes into new proteins. Errors in this process may lead to diseases. In particular, some transcription factors have been associated with a lethal pathological state, commonly known as cancer, associated with uncontrolled cellular proliferation, invasiveness of healthy tissues and abnormal responses to stimuli. Understanding cancer-related regulatory programs is a difficult task, often involving several TFs interacting together and influencing each other's activity. This Thesis presents new computational methodologies to study gene regulation. In addition we present applications of our methods to the understanding of cancer-related regulatory programs. The understanding of transcriptional regulation is a major challenge. We address this difficult question combining computational approaches with large collections of heterogeneous experimental data. In detail, we design signal processing tools to recover transcription factors binding sites on the DNA from genome-wide surveys like chromatin immunoprecipitation assays on tiling arrays (ChIP-chip). We then use the localization about the binding of TFs to explain expression levels of regulated genes. In this way we identify a regulatory synergy between two TFs, the oncogene C-MYC and SP1. C-MYC and SP1 bind preferentially at promoters and when SP1 binds next to C-NIYC on the DNA, the nearby gene is strongly expressed. The association between the two TFs at promoters is reflected by the binding sites conservation across mammals, by the permissive underlying chromatin states 'it represents an important control mechanism involved in cellular proliferation, thereby involved in cancer. Secondly, we identify the characteristics of TF estrogen receptor alpha (hERa) target genes and we study the influence of hERa in regulating transcription. hERa, upon hormone estrogen signaling, binds to DNA to regulate transcription of its targets in concert with its co-factors. To overcome the scarce experimental data about the binding sites of other TFs that may interact with hERa, we conduct in silico analysis of the sequences underlying the ChIP sites using the collection of position weight matrices (PWMs) of hERa partners, TFs FOXA1 and SP1. We combine ChIP-chip and ChIP-paired-end-diTags (ChIP-pet) data about hERa binding on DNA with the sequence information to explain gene expression levels in a large collection of cancer tissue samples and also on studies about the response of cells to estrogen. We confirm that hERa binding sites are distributed anywhere on the genome. However, we distinguish between binding sites near promoters and binding sites along the transcripts. The first group shows weak binding of hERa and high occurrence of SP1 motifs, in particular near estrogen responsive genes. The second group shows strong binding of hERa and significant correlation between the number of binding sites along a gene and the strength of gene induction in presence of estrogen. Some binding sites of the second group also show presence of FOXA1, but the role of this TF still needs to be investigated. Different mechanisms have been proposed to explain hERa-mediated induction of gene expression. Our work supports the model of hERa activating gene expression from distal binding sites by interacting with promoter bound TFs, like SP1. hERa has been associated with survival rates of breast cancer patients, though explanatory models are still incomplete: this result is important to better understand how hERa can control gene expression. Thirdly, we address the difficult question of regulatory network inference. We tackle this problem analyzing time-series of biological measurements such as quantification of mRNA levels or protein concentrations. Our approach uses the well-established penalized linear regression models where we impose sparseness on the connectivity of the regulatory network. We extend this method enforcing the coherence of the regulatory dependencies: a TF must coherently behave as an activator, or a repressor on all its targets. This requirement is implemented as constraints on the signs of the regressed coefficients in the penalized linear regression model. Our approach is better at reconstructing meaningful biological networks than previous methods based on penalized regression. The method is tested on the DREAM2 challenge of reconstructing a five-genes/TFs regulatory network obtaining the best performance in the "undirected signed excitatory" category. Thus, these bioinformatics methods, which are reliable, interpretable and fast enough to cover large biological dataset, have enabled us to better understand gene regulation in humans.
Resumo:
Background: Short-term OE (oleoyl-estrone) treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Results: Gene expression in adipose tissue from female treated rats (48 hours) was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL) were decreased by 52%, those of Fatty Acid Synthase (FAS) by 95%, those of Hormone Sensible Lipase (HSL) by 32%, those of Acetyl CoA Carboxylase (ACC) by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b) by 45%, and those of Fatty Acid Transport Protein 1 (FATP1) and Adipocyte Fatty Acid Binding Protein (FABP4) by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNF¿) values showed overexpression (198%). Conclusion: Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism.
Resumo:
We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems.
Resumo:
We present a feedback control scheme to stabilize unstable cellular patterns during the directional solidification of a binary alloy. The scheme is based on local heating of cell tips which protrude ahead of the mean position of all tips in the array. The feasibility of this scheme is demonstrated using phase-field simulations and, experimentally, using a real-time image processing algorithm, to track cell tips, coupled with a movable laser spot array device to heat the tips locally. We demonstrate, both numerically and experimentally, that spacings well below the threshold for a period-doubling instability can be stabilized. As predicted by the numerical calculations, cellular arrays become stable with uniform spacing through the feedback control which is maintained with minimal heating.
Resumo:
The function of DNA-binding proteins is controlled not just by their abundance, but mainly at the level of their activity in terms of their interactions with DNA and protein targets. Moreover, the affinity of such transcription factors to their target sequences is often controlled by co-factors and/or modifications that are not easily assessed from biological samples. Here, we describe a scalable method for monitoring protein-DNA interactions on a microarray surface. This approach was designed to determine the DNA-binding activity of proteins in crude cell extracts, complementing conventional expression profiling arrays. Enzymatic labeling of DNA enables direct normalization of the protein binding to the microarray, allowing the estimation of relative binding affinities. Using DNA sequences covering a range of affinities, we show that the new microarray-based method yields binding strength estimates similar to low-throughput gel mobility-shift assays. The microarray is also of high sensitivity, as it allows the detection of a rare DNA-binding protein from breast cancer cells, the human tumor suppressor AP-2. This approach thus mediates precise and robust assessment of the activity of DNA-binding proteins and takes present DNA-binding assays to a high throughput level.
Resumo:
ABSTRACT: BACKGROUND: It is accepted that a woman's lifetime risk of developing breast cancer after menopause is reduced by early full term pregnancy and multiparity. This phenomenon is thought to be associated with the development and differentiation of the breast during pregnancy. METHODS: In order to understand the underlying molecular mechanisms of pregnancy induced breast cancer protection, we profiled and compared the transcriptomes of normal breast tissue biopsies from 71 parous (P) and 42 nulliparous (NP) healthy postmenopausal women using Affymetrix Human Genome U133 Plus 2.0 arrays. To validate the results, we performed real time PCR and immunohistochemistry. RESULTS: We identified 305 differentially expressed probesets (208 distinct genes). Of these, 267 probesets were up- and 38 down-regulated in parous breast samples; bioinformatics analysis using gene ontology enrichment revealed that up-regulated genes in the parous breast represented biological processes involving differentiation and development, anchoring of epithelial cells to the basement membrane, hemidesmosome and cell-substrate junction assembly, mRNA and RNA metabolic processes and RNA splicing machinery. The down-regulated genes represented biological processes that comprised cell proliferation, regulation of IGF-like growth factor receptor signaling, somatic stem cell maintenance, muscle cell differentiation and apoptosis. CONCLUSIONS: This study suggests that the differentiation of the breast imprints a genomic signature that is centered in the mRNA processing reactome. These findings indicate that pregnancy may induce a safeguard mechanism at post-transcriptional level that maintains the fidelity of the transcriptional process.
Resumo:
ABSTRACT The network of actin cytoskeleton is composed of actin filaments (F-actin) that are made by polymerisation of actin monomers and actin binding proteins. It is required for growth and morphogenesis of eukaryotic cells. The labelling of F-actin with constitutively expressed GFP-Talin (Kost et al., 1998) reveals the organisation of cellular actin networks in plants. Due to the lack of information on actin cytoskeleton through gametophytic development of the model moss plant Physcornitrella patens, stable transgenic lines overexpressing GFP-Talin were generated to detect F-actin structures. It is shown that the 35S promoter driven expression is not suitable for F-actin labelling in all cells. When it is replaced by the inducible heat-shock promoter Gmhsp17.3 from soybean, one hour mild heat stress at 37°C followed by recovery at 25°C is enough to induce efficient and transient labelling in all tissues without altering cellular morphology. The optimal observations of F-actin structures at different stages of moss development can be done between 12-18 hours after the induction. By using confocal microscopy, we demonstrate that stellated actin arrays were densely accumulated at the growing tip in regenerating protoplasts, apical protonemal cells and rhizoids and connected with a fine dispersed F-actin mesh. Following three-dimensional growth, the cortical star-like structures are widespread in the meristematic cells of developing bud and young gametophores. On the contrary, undulating networks of actin cables are found at the final stage of cell differentiation. During redifferentiation of mature leaf cells into protonemal filaments the rather stagnant web of actin cables is replaced by diffuse actin meshwork. In eukaryotes, nucleation of the actin monomers prior to their polymerization is driven by the seven-subunit ARP2/3 complex and formins. We cloned the gene encoding the ARP3 subunit of P. patens and generated arp3 mutants of the moss through gene disruption. The knockout of ARP3 affects the elongation of chloronemal cells and blocks further differentiation of caulonemal cells and rhizoids, and the gametophores are slightly stunted compared to wild-type. The arp mutants were created in the heat-shock inducible GFP-Talin strains allowing us to visualise a disorganised actin network and a lack of star-like actin cytoskeleton arrays. We conclude that ARP2/3 dependent nucleation of actin filaments is critical for the growth of filamentous cells, which in turn influences moss colonization. In complementation assays, the overexpression of Physcomitrella and Arab idopsis ARP3 genes in the moss arp3 mutant results in full recovery of wild type phenotype. In contrast the ARP3 subunit of fission yeast is not able to complement the moss arp3 mutant of moss indicating that regulation of the ARP2/3 dependent actin nucleation diverged in different kingdoms. RESUME Le réseau d'actine est composé de filaments de F-actine et d'un ensemble de protéines s'y attachant (Actin binding proteins). Le réseau d'actine est nécessaire à la croissance et à la morphogenèse de toutes les cellules eucaryotes. Chez les plantes, le marquage ainsi que l'étude de l'organisation du réseau d'actine ont été réalisés en utilisant une fusion GFP-Talin (Kost et al., 1998) exprimée sous le control d'un promoteur constitutif. Afin d'étudier les structures F-actine dans les cellules de Physcomitrella Patens et pour combler le manque d'information sur le développement des gamétophores, des lignées transgéniques stables surexprimant GFP-Talin ont été crées. Nous avons démontré que l'utilisation du promoteur 35S est inadéquate pour le marquage complet et homogène des filaments d'actine dans toutes les cellules de P. patens. Par contre, l'utilisation du promoteur inductible Gmhsp17.3 nous a permis de réaliser un marquage transitoire et général dans tous les tissus de la mousse. Une heure de choc thermique à 37°C suivis d'un temps de récupération de 12-18h à 25°C sont les conditions optimales (sans dommages cellulaires) pour l'observation des structures F-actine à différentes étapes de développement de la mousse. En utilisant la microscopie confocale, nous avons observé l'existence de structures F-actine accumulées en forme d'étoiles. Ces structures, qui sont liées au réseau de microfilaments d'actine, ont été observées dans les protoplastes en régénération, les cellules des protonema apicales ainsi que dans les rhizoïdes. En suivant la croissance tridimensionnelle, ces structures en étoiles ont été observées dans les cellules meristématiques des bourgeons et des jeunes gamétophores. Par contre, dans les cellules différentiées ces structures laissent place à des réseaux de câbles épais. Nous avons également remarqué que durant la redifferentiation des cellules foliaires le réseau de câbles de F-actine est remplacé par un réseau de F-actine diffus. Dans les cellules eucaryotes, la nucléation des filaments d'actirie précédant leur polymérisation est contrôlé par sept sous unités du complexe ARP2/3 et par des formines. Nous avons isolé le gène codant pour la sous unité ARP3 de P. patens et nous avons crée des mutants arp3 par intégration ciblée (Knockout). L'élongation des cellules chloronema est clairement affectée dans les mutants arp3. La différentiation des caulonemata et des rhizoïdes est bloquée et les gametophores sont légèrement plus courts comparé au type sauvage. A fin d'étudier l'organisation des filaments d'actines dans les mutants arp3, nous avons aussi réalisé un arp3-knockout dans la lignée Hsp-GFP-Talin. La nouvelle lignée générée nous a permis de visualiser une désorganisation du réseau d'actine et une absence complète de structures de F-actine accumulée en forme d'étoiles. Les résultats obtenus nous amènent à conclure que la nucléation (ARP2/3 dépendante) des filaments d'actine est indispensable à la croissance des cellules filamenteuses. Par conséquent, les filaments d'actine semblent avoir un rôle dans la colonisation des milieux par les mousses. Nous avons également procédé à des essais de complémentation du mutant arp3. La surexpression des gènes ARP3 de Physcomitrella et d'Arabidopsis dans les cellules du mutant arp3 rétabli complètement le phénotype WT. Par contre, le gène ARP3 des levures n'est pas suffisant pour complémenter la même mutation dans les cellules de mousses. Ce résultat démontre que les mécanismes de régulation de la nucléation des filaments d'actine (ARP2/3 dépendante) sont différents entre les différents groupes d'eucaryotes.
Resumo:
Body fat distribution, particularly centralized obesity, is associated with metabolic risk above and beyond total adiposity. We performed genome-wide association of abdominal adipose depots quantified using computed tomography (CT) to uncover novel loci for body fat distribution among participants of European ancestry. Subcutaneous and visceral fat were quantified in 5,560 women and 4,997 men from 4 population-based studies. Genome-wide genotyping was performed using standard arrays and imputed to ~2.5 million Hapmap SNPs. Each study performed a genome-wide association analysis of subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), VAT adjusted for body mass index, and VAT/SAT ratio (a metric of the propensity to store fat viscerally as compared to subcutaneously) in the overall sample and in women and men separately. A weighted z-score meta-analysis was conducted. For the VAT/SAT ratio, our most significant p-value was rs11118316 at LYPLAL1 gene (p = 3.1 × 10E-09), previously identified in association with waist-hip ratio. For SAT, the most significant SNP was in the FTO gene (p = 5.9 × 10E-08). Given the known gender differences in body fat distribution, we performed sex-specific analyses. Our most significant finding was for VAT in women, rs1659258 near THNSL2 (p = 1.6 × 10-08), but not men (p = 0.75). Validation of this SNP in the GIANT consortium data demonstrated a similar sex-specific pattern, with observed significance in women (p = 0.006) but not men (p = 0.24) for BMI and waist circumference (p = 0.04 [women], p = 0.49 [men]). Finally, we interrogated our data for the 14 recently published loci for body fat distribution (measured by waist-hip ratio adjusted for BMI); associations were observed at 7 of these loci. In contrast, we observed associations at only 7/32 loci previously identified in association with BMI; the majority of overlap was observed with SAT. Genome-wide association for visceral and subcutaneous fat revealed a SNP for VAT in women. More refined phenotypes for body composition and fat distribution can detect new loci not previously uncovered in large-scale GWAS of anthropometric traits.