919 resultados para Motor skills disorders
Resumo:
There have been numerous attempts to reveal the neurobiological basis of schizophrenia spectrum disorders. Results however, remain as heterogeneous as the schizophrenia spectrum disorders itself. Therefore, one aim of this thesis was to divide patients affected by this disorder into subgroups in order to homogenize the results of future studies. In a first study it is suggested that psychopathological rating scales should focus on symptoms-clusters that may have a common neurophysiological background. The here presented Bern Psychopathology Scale (BPS) proposes that alterations in three wellknown brain systems (motor, language, and affective) are largely leading to the communication failures observable on a behavioral level, but also - as repeatedly hypothesized - to dysconnectivity within and between brain systems in schizophrenia spectrum disorders. The external validity of the motor domain in the BPS was tested against the objective measure of 24 hours wrist actigraphy, in a second study. The subjective, the quantitative, as well as the global rating of the degree of motor disorders in this patient group showed significant correlations to the acquired motor activity. This result confirmed in a first step the practicability of the motor domain of the BPS, but needs further validation regarding pathological brain alterations. Finally, in a third study (independent from the two other studies), two cerebral Resting State Networks frequently altered in schizophrenia were investigated for the first time using simultaneous EEG/fMRI: The well-known default mode network and the left working memory network. Besides the changes in these fMRI-based networks, there are well-documented findings that patients exhibit alterations in EEG spectra compared to healthy controls. However, only through the multimodal approach it was possible to discover that patients with schizophrenia spectrum disorders have a slower driving frequency of the Resting State Networks compared to the matched healthy controls. Such a dysfunctional coupling between neuronal frequency and functional brain organization could explain in a uni- or multifactorial way (dysfunctional cross-frequency coupling, maturational effects, vigilance fluctuations, task-related suppression), how the typical psychotic symptoms might occur. To conclude, the major contributions presented in this thesis were on one hand the development of a psychopathology rating scale that is based on the assumption of dysfunctional brain networks, as well as the new evidence of a dysfunctional triggering frequency of Resting State Networks from the simultaneous EEG/fMRI study in patients affected by a schizophrenia spectrum disorder.
Resumo:
Stroke is one of the most common conditions requiring rehabilitation, and its motor impairments are a major cause of permanent disability. Hemiparesis is observed by 80% of the patients after acute stroke. Neuroimaging studies showed that real and imagined movements have similarities regarding brain activation, supplying evidence that those similarities are based on the same process. Within this context, the combination of MP with physical and occupational therapy appears to be a natural complement based on neurorehabilitation concepts. Our study seeks to investigate if MP for stroke rehabilitation of upper limbs is an effective adjunct therapy. PubMed (Medline), ISI knowledge (Institute for Scientific Information) and SciELO (Scientific Electronic Library) were terminated on 20 February 2015. Data were collected on variables as follows: sample size, type of supervision, configuration of mental practice, setting the physical practice (intensity, number of sets and repetitions, duration of contractions, rest interval between sets, weekly and total duration), measures of sensorimotor deficits used in the main studies and significant results. Random effects models were used that take into account the variance within and between studies. Seven articles were selected. As there was no statistically significant difference between the two groups (MP vs Control), showed a – 0.6 (95% CI: –1.27 to 0.04), for upper limb motor restoration after stroke. The present meta-analysis concluded that MP is not effective as adjunct therapeutic strategy for upper limb motor restoration after stroke.
Resumo:
BACKGROUND The Bern Psychopathology Scale (BPS) is based on a system-specific approach to classifying the psychopathological symptom pattern of schizophrenia. It consists of subscales for three domains (language, affect and motor behaviour) that are hypothesized to be related to specific brain circuits. The aim of the study was to examine the factor structure of the BPS in patients with schizophrenia spectrum disorders. METHODS One hundred and forty-nine inpatients with schizophrenia spectrum disorders were recruited at the Department of Psychiatry II, Ulm University, Germany (n=100) and at the University Hospital of Psychiatry, Bern, Switzerland (n=49). Psychopathology was assessed with the BPS. The VARCLUS procedure of SAS(®) (a type of oblique component analysis) was used for statistical analysis. RESULTS Six clusters were identified (inhibited language, inhibited motor behaviour, inhibited affect, disinhibited affect, disinhibited language/motor behaviour, inhibited language/motor behaviour) which explained 40.13% of the total variance of the data. A binary division of attributes into an inhibited and disinhibited cluster was appropriate, although an overlap was found between the language and motor behaviour domains. There was a clear distinction between qualitative and quantitative symptoms. CONCLUSIONS The results argue for the validity of the BPS in identifying subsyndromes of schizophrenia spectrum disorders according to a dimensional approach. Future research should address the longitudinal assessment of dimensional psychopathological symptoms and elucidate the underlying neurobiological processes.
Resumo:
In bipolar disorders, there are unclear diagnostic boundaries with unipolar depression and schizophrenia, inconsistency of treatment guidelines, relatively long trial-and-error phases of treatment optimization, and increasing use of complex combination therapies lacking empirical evidence. These suggest that the current definition of bipolar disorders based on clinical symptoms reflects a clinically and etiologically heterogeneous entity. Stratification of treatments for bipolar disorders based on biomarkers and improved clinical markers are greatly needed to increase the efficacy of currently available treatments and improve the chances of developing novel therapeutic approaches. This review provides a theoretical framework to identify biomarkers and summarizes the most promising markers for stratification regarding beneficial and adverse treatment effects. State and stage specifiers, neuropsychological tests, neuroimaging, and genetic and epigenetic biomarkers will be discussed with respect to their ability to predict the response to specific pharmacological and psychosocial psychotherapies for bipolar disorders. To date, the most reliable markers are derived from psychopathology and history-taking, while no biomarker has been found that reliably predicts individual treatment responses. This review underlines both the importance of clinical diagnostic skills and the need for biological research to identify markers that will allow the targeting of treatment specifically to sub-populations of bipolar patients who are more likely to benefit from a specific treatment and less likely to develop adverse reactions.
Resumo:
Background: Sensor-based recordings of human movements are becoming increasingly important for the assessment of motor symptoms in neurological disorders beyond rehabilitative purposes. ASSESS MS is a movement recording and analysis system being developed to automate the classification of motor dysfunction in patients with multiple sclerosis (MS) using depth-sensing computer vision. It aims to provide a more consistent and finer-grained measurement of motor dysfunction than currently possible. Objective: To test the usability and acceptability of ASSESS MS with health professionals and patients with MS. Methods: A prospective, mixed-methods study was carried out at 3 centers. After a 1-hour training session, a convenience sample of 12 health professionals (6 neurologists and 6 nurses) used ASSESS MS to capture recordings of standardized movements performed by 51 volunteer patients. Metrics for effectiveness, efficiency, and acceptability were defined and used to analyze data captured by ASSESS MS, video recordings of each examination, feedback questionnaires, and follow-up interviews. Results: All health professionals were able to complete recordings using ASSESS MS, achieving high levels of standardization on 3 of 4 metrics (movement performance, lateral positioning, and clear camera view but not distance positioning). Results were unaffected by patients’ level of physical or cognitive disability. ASSESS MS was perceived as easy to use by both patients and health professionals with high scores on the Likert-scale questions and positive interview commentary. ASSESS MS was highly acceptable to patients on all dimensions considered, including attitudes to future use, interaction (with health professionals), and overall perceptions of ASSESS MS. Health professionals also accepted ASSESS MS, but with greater ambivalence arising from the need to alter patient interaction styles. There was little variation in results across participating centers, and no differences between neurologists and nurses. Conclusions: In typical clinical settings, ASSESS MS is usable and acceptable to both patients and health professionals, generating data of a quality suitable for clinical analysis. An iterative design process appears to have been successful in accounting for factors that permit ASSESS MS to be used by a range of health professionals in new settings with minimal training. The study shows the potential of shifting ubiquitous sensing technologies from research into the clinic through a design approach that gives appropriate attention to the clinic environment.
Resumo:
Background The few studies that have evaluated syntax in autism spectrum disorder (ASD) have yielded conflicting findings: some suggest that once matched on mental age, ASD and typically developing controls do not differ for grammar, while others report that morphosyntactic deficits are independent of cognitive skills in ASD. There is a need for a better understanding of syntax in ASD and its relation to, or dissociation from, nonverbal abilities. Aims Syntax in ASD was assessed by evaluating subject and object relative clause comprehension in adolescents and adults diagnosed with ASD with a performance IQ within the normal range, and with or without a history of language delay. Methods & Procedures Twenty-eight participants with ASD (mean age 21.8) and 28 age-matched controls (mean age 22.07) were required to point to a character designated by relative clauses that varied in syntactic complexity. Outcomes & Results Scores indicate that participants with ASD regardless of the language development history perform significantly worse than age-matched controls with object relative clauses. In addition, participants with ASD with a history of language delay (diagnosed with high-functioning autism in the DSM-IV-TR) perform worse on subject relatives than ASD participants without language delay (diagnosed with Asperger syndrome in the DSM-IV-TR), suggesting that these two groups do not have equivalent linguistic abilities. Performance IQ has a positive impact on the success of the task for the population with ASD. Conclusions & Implications This study reveals subtle grammatical difficulties remaining in adult individuals with ASD within normal IQ range as compared with age-matched peers. Even in the absence of a history of language delay in childhood, the results suggest that a slight deficit may nevertheless be present and go undetected by standardized language assessments. Both groups with and without language delay have a similar global performance on relative clause comprehension; however, the study also indicates that the participants with reported language delay show more difficulty with subject relatives than the participants without language delay, suggesting the presence of differences in linguistic abilities between these subgroups of ASD.
Resumo:
The present study provided further information about stuttering among bilingual populations and attempted to assess the significance of repeated oral-motor movements during an adaptation task in two bilingual adults. This was accomplished by requesting that bilingual people who stutter to complete an adaptation task of the same written passage in two different languages. Explored was the following research question: In bilingual speakers who stutter, what is the effect of altering the oral-motor movements by changing the language of the passage read during an adaptation task? Two bilingual adults were each requested to complete an adaptation task consisting of 10 readings in two separate conditions. Participants 1 and 2 completed two conditions, each of which contained a separate passage. Condition B consisted of an adaptation procedure in which the participants read five successive readings in English followed by five additional successive readings in Language 1 (L1). Following the completion of the first randomly assigned condition, the participant was given a rest period of 30 minutes before beginning the remaining condition and passage. Condition A consisted of an adaptation procedure in which the participants read five successive readings in L1 followed by five additional successive readings in English. Results across participants, conditions, and languages indicated an atypical adaptation curve over 10 readings characterized by a dramatic increase in stuttering following a change of language. Closer examination of individual participants revealed differences in stuttering and adaptation among languages and conditions. Participants 1 and 2 demonstrated differences in adaptation and stuttering among languages. Participant 1 demonstrated an increase in stuttering following a change in language read in Condition B and a decrease in stuttering following a change in language read in Condition A. It is speculated that language proficiency contributed to the observed differences in stuttering following a change of language. Participant 2 demonstrated an increase in stuttering following a change in language read in Condition A and a minimal increase in stuttering following a change in language read in Condition B. It is speculated that a change in the oral-motor plan contributed to the increase in stuttering in Condition A. Collectively, findings from this exploratory study lend support to an interactive effect between language proficiency and a change in the oral-motor plan contributing to increased stuttering following a change of language during an adaptation task.
Resumo:
Ambient Intelligence could support innovative application domains like motor impairments' detection at the home environment. This research aims to prevent neurodevelopmental disorders through the natural interaction of the children with embedded intelligence daily life objects, like home furniture and toys. Designed system uses an interoperable platform to provide two intelligent interrelated home healthcare services: monitoring of children¿s abilities and completion of early stimulation activities. A set of sensors, which are embedded within the rooms, toys and furniture, allows private data gathering about the child's interaction with the environment. This information feeds a reasoning subsystem, which encloses an ontology of neurodevelopment items, and adapts the service to the age and acquisition of expected abilities. Next, the platform proposes customized stimulation services by taking advantage of the existing facilities at the child's environment. The result integrates Embedded Sensor Systems for Health at Mälardalen University with UPM Smart Home, for adapted services delivery.
Resumo:
Spinal muscular atrophy (SMA) is attributed to mutations in the SMN1 gene, leading to loss of spinal cord motor neurons. The neurotropic Sindbis virus vector system was used to investigate a role for the survival motor neuron (SMN) protein in regulating neuronal apoptosis. Here we show that SMN protects primary neurons and differentiated neuron-like stem cells, but not cultured cell lines from virus-induced apoptotic death. SMN also protects neurons in vivo and increases survival of virus-infected mice. SMN mutants (SMNΔ7 and SMN-Y272C) found in patients with SMA not only lack antiapoptotic activity but also are potently proapoptotic, causing increased neuronal apoptosis and animal mortality. Full-length SMN is proteolytically processed in brains undergoing apoptosis or after ischemic injury. Mutation of an Asp-252 of SMN abolished cleavage of SMN and increased the antiapoptotic function of full-length SMN in neurons. Taken together, deletions or mutations of the C terminus of SMN that result from proteolysis, splicing (SMNΔ7), or germ-line mutations (e.g., Y272C), produce a proapoptotic form of SMN that may contribute to neuronal death in SMA and perhaps other neurodegenerative disorders.
Resumo:
Behavioral and neurophysiological studies suggest that skill learning can be mediated by discrete, experience-driven changes within specific neural representations subserving the performance of the trained task. We have shown that a few minutes of daily practice on a sequential finger opposition task induced large, incremental performance gains over a few weeks of training. These gains did not generalize to the contralateral hand nor to a matched sequence of identical component movements, suggesting that a lateralized representation of the learned sequence of movements evolved through practice. This interpretation was supported by functional MRI data showing that a more extensive representation of the trained sequence emerged in primary motor cortex after 3 weeks of training. The imaging data, however, also indicated important changes occurring in primary motor cortex during the initial scanning sessions, which we proposed may reflect the setting up of a task-specific motor processing routine. Here we provide behavioral and functional MRI data on experience-dependent changes induced by a limited amount of repetitions within the first imaging session. We show that this limited training experience can be sufficient to trigger performance gains that require time to become evident. We propose that skilled motor performance is acquired in several stages: “fast” learning, an initial, within-session improvement phase, followed by a period of consolidation of several hours duration, and then “slow” learning, consisting of delayed, incremental gains in performance emerging after continued practice. This time course may reflect basic mechanisms of neuronal plasticity in the adult brain that subserve the acquisition and retention of many different skills.
Resumo:
Paraneoplastic neurological disorders may result from autoimmunity directed against antigens shared by the affected neurons and the associated cancer cells. We have recently reported the case of a woman with breast cancer and paraneoplastic lower motor neuron syndrome whose serum contained autoantibodies directed against axon initial segments and nodes of Ranvier of myelinated axons, including the axons of motoneurons. Here, we show that major targets of the autoantibodies of this patient are βIVΣ1 spectrin and βIV spectrin 140, two isoforms of the novel βIV spectrin gene, as well as a neuronal surface epitope yet to be identified. Partial improvement of the neurological symptoms following cancer removal was associated with a drastic reduction in the titer of the autoantibodies against βIV spectrin and nodal antigens in general, consistent with the autoimmune pathogenesis of the paraneoplastic lower motor neuron syndrome. The identification of βIV spectrin isoforms and surface nodal antigens as novel autoimmune targets in lower motor neuron syndrome provide new insights into the pathogenesis of this severe neurological disease.
Resumo:
Federal Highway Administration, Office of Motor Carriers, Washington, D.C.
Resumo:
Federal Highway Administration, Office of Motor Carriers, Washington, D.C.
Resumo:
Federal Highway Administration, Office of Motor Carriers, Washington, D.C.
Resumo:
Many authors report changes in the control of the trunk muscles in people with low back pain (LBP). Although there is considerable disagreement regarding the nature of these changes, we have consistently found differential effects on the deep intrinsic and superficial muscles of the lumbopelvic region. Two issues require consideration; first, the potential mechanisms for these changes in control, and secondly, the effect or outcome of changes in control for lumbopelvic function. Recent data indicate that experimentally induced pain may replicate some of the changes identified in people with LBP. While this does not exclude the possibility that changes in control of the trunk muscles may lead to pain, it does argue that, at least in some cases, pain may cause the changes in control. There are many possible mechanisms, including changes in excitability in the motor pathway, changes in the sensory system, and factors associated. with the attention demanding, stressful and fearful aspects of pain. A new hypothesis is presented regarding the outcome from differential effects of pain on the elements of the motor system. Taken together these data argue for strategies of prevention and rehabilitation of LBP (C) 2003 Elsevier Science Ltd. All rights reserved.