1000 resultados para Monitoring
Resumo:
We propose a multiple initialization based spectral peak tracking (MISPT) technique for heart rate monitoring from photoplethysmography (PPG) signal. MISPT is applied on the PPG signal after removing the motion artifact using an adaptive noise cancellation filter. MISPT yields several estimates of the heart rate trajectory from the spectrogram of the denoised PPG signal which are finally combined using a novel measure called trajectory strength. Multiple initializations help in correcting erroneous heart rate trajectories unlike the typical SPT which uses only single initialization. Experiments on the PPG data from 12 subjects recorded during intensive physical exercise show that the MISPT based heart rate monitoring indeed yields a better heart rate estimate compared to the SPT with single initialization. On the 12 datasets MISPT results in an average absolute error of 1.11 BPM which is lower than 1.28 BPM obtained by the state-of-the-art online heart rate monitoring algorithm.
Resumo:
A new electrochemical sensing device was constructed for determination of pesticides. In this report, acetylcholinesterase was bioconjugated onto hybrid nanocomposite, i.e. iron oxide nanoparticles and poly(indole-5-carboxylic acid) (Fe(3)O(4)NPs/Pin5COOH) was deposited electrochemically on glassy carbon electrode. Fe(3)O(4)NPs was showed as an amplified sensing interface at lower voltage which makes the sensor more sensitive and specific. The enzyme inhibition by pesticides was detected within concentrations ranges between 0.1-60 and 1.5-70 nM for malathion and chlorpyrifos, respectively, under optimal experimental conditions (sodium phosphate buffer, pH 7.0 and 25 degrees C). Biosensor determined the pesticides level in water samples (spiked) with satisfactory accuracy (96%-100%). Sensor showed good storage stability and retained 50% of its initial activity within 70 days at 4 degrees C.
Resumo:
Guided waves using piezo-electric wafer active sensors (PWAS) is one of the useful techniques of damage detection. Sensor network optimization with minimal network hardware footprint and maximal area of coverage remains a challenging problem. PWAS sensors are placed at discrete locations in order to inspect damages in plates and the idea has the potential to be extended to assembled structures. Various actuator-sensor configurations are possible within the network in order to identify and locate damages. In this paper we present a correlation based approach to monitor cracks emanating from rivet line using a simulated guided wave signal whose sensor is operating in pulse echo mode. Discussions regarding the identification of phase change due to reflections from the crack are also discussed in this paper.
Resumo:
In this text we present the design of a wearable health monitoring device capable of remotely monitoring health parameters of neonates for the first few weeks after birth. The device is primarily aimed at continuously tracking the skin temperature to indicate the onset of hypothermia in newborns. A medical grade thermistor is responsible for temperature measurement and is directly interfaced to a microcontroller with an integrated bluetooth low energy radio. An inertial sensor is also present in the device to facilitate breathing rate measurement which has been discussed briefly. Sensed data is transferred securely over bluetooth low energy radio to a nearby gateway, which relays the information to a central database for real time monitoring. Low power optimizations at both the circuit and software levels ensure a prolonged battery life. The device is packaged in a baby friendly, water proof housing and is easily sterilizable and reusable.
Resumo:
Up to now, high-resolution mapping of surface water extent from satellites has only been available for a few regions, over limited time periods. The extension of the temporal and spatial coverage was difficult, due to the limitation of the remote sensing technique e.g., the interaction of the radiation with vegetation or cloud for visible observations or the temporal sampling with the synthetic aperture radar (SAR)]. The advantages and the limitations of the various satellite techniques are reviewed. The need to have a global and consistent estimate of the water surfaces over long time periods triggered the development of a multi-satellite methodology to obtain consistent surface water all over the globe, regardless of the environments. The Global Inundation Extent from Multi-satellites (GIEMS) combines the complementary strengths of satellite observations from the visible to the microwave, to produce a low-resolution monthly dataset () of surface water extent and dynamics. Downscaling algorithms are now developed and applied to GIEMS, using high-spatial-resolution information from visible, near-infrared, and synthetic aperture radar (SAR) satellite images, or from digital elevation models. Preliminary products are available down to 500-m spatial resolution. This work bridges the gaps and prepares for the future NASA/CNES Surface Water Ocean Topography (SWOT) mission to be launched in 2020. SWOT will delineate surface water extent estimates and their water storage with an unprecedented spatial resolution and accuracy, thanks to a SAR in an interferometry mode. When available, the SWOT data will be adopted to downscale GIEMS, to produce a long time series of water surfaces at global scale, consistent with the SWOT observations.
Resumo:
A comprehensive strength monitoring system used on a fixed jacket platform is presented in this paper. The long-term monitoring of W-11-4A platform achieved. Structural responses (strain and acceleration) at selected locations, as well as associated environmental parameters, have been obtained. The emphasis of the paper is placed on the system design, and the instrumentation and operation methodology employed in the monitoring of the structural responses. The performance of the system and the characteristic results obtained during its 13-month operation are also summarized.
Resumo:
Abstract-This paper reports a single-crystal silicon mass sensor based on a square-plate resonant structure excited in the wine glass bulk acoustic mode at a resonant frequency of 2.065 MHz and an impressive quality factor of 4 million at 12 mtorr pressure. Mass loading on the resonator results in a linear downshift in the resonant frequency of this device, wherein the measured sensitivity is found to be 175 Hz cm2/μg. The silicon resonator is embedded in an oscillator feedback loop, which has a short-term frequency stability of 3 mHz (approximately 1.5 ppb) at an operating pressure of 3.2 mtorr, corresponding to an equivalent mass noise floor of 17 pg/cm2. Possible applications of this device include thin film monitoring and gas sensing, with the potential added benefits of scalability and integration with CMOS technology. © 2008 IEEE.
Resumo:
The evaluation of mechanical properties of carbon nanotube (CNT) fibers is inherently difficult. Here, Raman scattering-a generic methodology independent of mechanical measurements-is used to determine the interbundle strength and microscopic failure process for various CNT macroarchitectures. Raman data are used to predict the moduli of CNT films and fibers, and to illustrate the influences of the twisting geometries on the fibers' mechanical performances.