920 resultados para Model-based optimization


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Prediction of random effects is an important problem with expanding applications. In the simplest context, the problem corresponds to prediction of the latent value (the mean) of a realized cluster selected via two-stage sampling. Recently, Stanek and Singer [Predicting random effects from finite population clustered samples with response error. J. Amer. Statist. Assoc. 99, 119-130] developed best linear unbiased predictors (BLUP) under a finite population mixed model that outperform BLUPs from mixed models and superpopulation models. Their setup, however, does not allow for unequally sized clusters. To overcome this drawback, we consider an expanded finite population mixed model based on a larger set of random variables that span a higher dimensional space than those typically applied to such problems. We show that BLUPs for linear combinations of the realized cluster means derived under such a model have considerably smaller mean squared error (MSE) than those obtained from mixed models, superpopulation models, and finite population mixed models. We motivate our general approach by an example developed for two-stage cluster sampling and show that it faithfully captures the stochastic aspects of sampling in the problem. We also consider simulation studies to illustrate the increased accuracy of the BLUP obtained under the expanded finite population mixed model. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Random effect models have been widely applied in many fields of research. However, models with uncertain design matrices for random effects have been little investigated before. In some applications with such problems, an expectation method has been used for simplicity. This method does not include the extra information of uncertainty in the design matrix is not included. The closed solution for this problem is generally difficult to attain. We therefore propose an two-step algorithm for estimating the parameters, especially the variance components in the model. The implementation is based on Monte Carlo approximation and a Newton-Raphson-based EM algorithm. As an example, a simulated genetics dataset was analyzed. The results showed that the proportion of the total variance explained by the random effects was accurately estimated, which was highly underestimated by the expectation method. By introducing heuristic search and optimization methods, the algorithm can possibly be developed to infer the 'model-based' best design matrix and the corresponding best estimates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A procedure for characterizing global uncertainty of a rainfall-runoff simulation model based on using grey numbers is presented. By using the grey numbers technique the uncertainty is characterized by an interval; once the parameters of the rainfall-runoff model have been properly defined as grey numbers, by using the grey mathematics and functions it is possible to obtain simulated discharges in the form of grey numbers whose envelope defines a band which represents the vagueness/uncertainty associated with the simulated variable. The grey numbers representing the model parameters are estimated in such a way that the band obtained from the envelope of simulated grey discharges includes an assigned percentage of observed discharge values and is at the same time as narrow as possible. The approach is applied to a real case study highlighting that a rigorous application of the procedure for direct simulation through the rainfall-runoff model with grey parameters involves long computational times. However, these times can be significantly reduced using a simplified computing procedure with minimal approximations in the quantification of the grey numbers representing the simulated discharges. Relying on this simplified procedure, the conceptual rainfall-runoff grey model is thus calibrated and the uncertainty bands obtained both downstream of the calibration process and downstream of the validation process are compared with those obtained by using a well-established approach, like the GLUE approach, for characterizing uncertainty. The results of the comparison show that the proposed approach may represent a valid tool for characterizing the global uncertainty associable with the output of a rainfall-runoff simulation model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microwave remote sensing has high potential for soil moisture retrieval. However, the efficient retrieval of soil moisture depends on optimally choosing the soil moisture retrieval parameters. In this study first the initial evaluation of SMOS L2 product is performed and then four approaches regarding soil moisture retrieval from SMOS brightness temperature are reported. The radiative transfer equation based tau-omega rationale is used in this study for the soil moisture retrievals. The single channel algorithms (SCA) using H polarisation is implemented with modifications, which includes the effective temperatures simulated from ECMWF (downscaled using WRF-NOAH Land Surface Model (LSM)) and MODIS. The retrieved soil moisture is then utilized for soil moisture deficit (SMD) estimation using empirical relationships with Probability Distributed Model based SMD as a benchmark. The square of correlation during the calibration indicates a value of R2 =0.359 for approach 4 (WRF-NOAH LSM based LST with optimized roughness parameters) followed by the approach 2 (optimized roughness parameters and MODIS based LST) (R2 =0.293), approach 3 (WRF-NOAH LSM based LST with no optimization) (R2 =0.267) and approach 1(MODIS based LST with no optimization) (R2 =0.163). Similarly, during the validation a highest performance is reported by approach 4. The other approaches are also following a similar trend as calibration. All the performances are depicted through Taylor diagram which indicates that the H polarisation using ECMWF based LST is giving a better performance for SMD estimation than the original SMOS L2 products at a catchment scale.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este estudo buscou verificar a influencia dos agentes da cadeia de suprimentos no desempenho do desenvolvimento de novos produtos quando os agentes são analisados em conjunto. A motivação desta pesquisa veio de estudos que alertaram para a consideração da integração da cadeia de suprimentos como um constructo multidimensional, englobando o envolvimento da manufatura, fornecedores e clientes no desenvolvimento de novos produtos; e devido à falta de informação sobre as influencias individuais destes agentes no desenvolvimento de novos produtos. Sob essas considerações, buscou-se construir um modelo analítico baseado na Teoria do Capital Social e Capacidade Absortiva, construir hipóteses a partir da revisão da literatura e conectar constructos como cooperação, envolvimento do fornecedor no desenvolvimento de novos produtos (DNP), envolvimento do cliente no DNP, envolvimento da manufatura no DNP, antecipação de novas tecnologias, melhoria contínua, desempenho operacional do DNP, desempenho de mercado do NPD e desempenho de negócio do DNP. Para testar as hipóteses foram consideradas três variáveis moderadoras, tais como turbulência ambiental (baixa, média e alta), indústria (eletrônicos, maquinários e equipamentos de transporte) e localização (América, Europa e Ásia). Para testar o modelo foram usados dados do projeto High Performance Manufacturing que contém 339 empresas das indústrias de eletrônicos, maquinários e equipamentos de transporte, localizadas em onze países. As hipóteses foram testadas por meio da Análise Fatorial Confirmatória (AFC) incluindo a moderação muti-grupo para as três variáveis moderadoras mencionadas anteriormente. Os principais resultados apontaram que as hipóteses relacionadas com cooperação foram confirmadas em ambientes de média turbulência, enquanto as hipóteses relacionadas ao desempenho no DNP foram confirmadas em ambientes de baixa turbulência ambiental e em países asiáticos. Adicionalmente, sob as mesmas condições, fornecedores, clientes e manufatura influenciam diferentemente no desempenho de novos produtos. Assim, o envolvimento de fornecedores influencia diretamente no desempenho operacional e indiretamente no desempenho de mercado e de negócio em baixos níveis de turbulência ambiental, na indústria de equipamentos de transporte em países da Americanos e Europeus. De igual forma, o envolvimento do cliente influenciou diretamente no desempenho operacional e indiretamente no desempenho de mercado e do negócio em médio nível de turbulência ambiental, na indústria de maquinários e em países Asiáticos. Fornecedores e clientes não influenciam diretamente no desempenho de mercado e do negócio e não influenciam indiretamente no desempenho operacional. O envolvimento da manufatura não influenciou nenhum tipo de desempenho do desenvolvimento de novos produtos em todos os cenários testados.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A simple model based on, the maximum energy that an athlete can produce in a small time interval is used to describe the high and long jump. Conservation of angular momentum is used to explain why an athlete should, run horizontally to perform a vertical jump. Our results agree with world records. (c) 2005 American Association of Physics Teachers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A quantificação do impacto das práticas de preparo sobre as perdas de carbono do solo é dependente da habilidade de se descrever a variabilidade temporal da emissão de CO2 do solo após preparo. Tem sido sugerido que as grandes quantidades de CO2 emitido após o preparo do solo podem servir como um indicador das modificações nos estoques de carbono do solo em longo termo. Neste trabalho é apresentado um modelo de duas partes baseado na temperatura e na umidade do solo e que inclui um termo exponencial decrescente do tempo que é eficiente no ajuste das emissões intermediárias após preparo: arado de disco seguido de uma passagem com a grade niveladora (convencional) e escarificador de arrasto seguido da passagem com rolo destorroador (reduzido). As emissões após o preparo do solo são descritas utilizando-se estimativa não linear com um coeficiente de determinação (R²) tão alto quanto 0.98 após preparo reduzido. Os resultados indicam que nas previsões da emissão de CO2 após o preparo do solo é importante considerar um termo exponencial decrescente no tempo após preparo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this dissertation new models of propagation path loss predictions are proposed by from techniques of optimization recent and measures of power levels for the urban and suburban areas of Natal, city of Brazilian northeast. These new proposed models are: (i) a statistical model that was implemented based in the addition of second-order statistics for the power and the altimetry of the relief in model of linear losses; (ii) a artificial neural networks model used the training of the algorithm backpropagation, in order to get the equation of propagation losses; (iii) a model based on the technique of the random walker, that considers the random of the absorption and the chaos of the environment and than its unknown parameters for the equation of propagation losses are determined through of a neural network. The digitalization of the relief for the urban and suburban areas of Natal were carried through of the development of specific computational programs and had been used available maps in the Statistics and Geography Brazilian Institute. The validations of the proposed propagation models had been carried through comparisons with measures and propagation classic models, and numerical good agreements were observed. These new considered models could be applied to any urban and suburban scenes with characteristic similar architectural to the city of Natal

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A remoção de plantas aquáticas tem sido utilizada como opção ao controle químico e biológico, em razão de restrições ambientais em algumas regiões brasileiras. O objetivo deste trabalho foi desenvolver um modelo para análise econômica e operacional da remoção mecânica de plantas aquáticas, visando realizar estudo econômico comparativo com o controle químico. A operação foi estudada num reservatório de uma usina de bombeamento em Barra do Piraí-RJ. O sistema consiste de retroescavadeiras instaladas em balsas, usadas para cortar as plantas e liberá-las no fluxo de água. Antes da tomada d'água existe uma barreira flutuante que intercepta as plantas, as quais são removidas por um guindaste fixo nas margens. As plantas são armazenadas por algum tempo e depois descartadas. Existe, ainda, um sistema de limpeza das grades da tomada d'água. Dados do volume total de plantas descartadas foram coletados durante 14 meses, assim como foi avaliado o volume de biomassa produzido por área das principais espécies infestantes. A empreiteira que administra o serviço forneceu planilhas de custos e outro parâmetros operacionais. Um modelo foi desenvolvido para calcular custos por hectare de plantas removidas. Os resultados mostraram custo médio mensal de US$ 17.780,28 por hectare. Apesar do alto custo, o sistema de remoção demonstrou capacidade de controlar apenas 4,1% da área infestada no reservatório, na época da coleta dos dados. Simulando dados de uma aplicação de glyphosate, o controle químico custaria apenas 0,23% do custo da remoção. Análises de sensibilidade mostraram que a compactação das plantas para transporte, o volume de plantas produzidas por área e o custo do transporte são os parâmetros principais para a otimização.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work presents an optimization technique based on structural topology optimization methods, TOM, designed to solve problems of thermoelasticity 3D. The presented approach is based on the adjoint method of sensitivity analysis unified design and is intended to loosely coupled thermomechanical problems. The technique makes use of analytical expressions of sensitivities, enabling a reduction in the computational cost through the use of a coupled field adjoint equation, defined in terms the of temperature and displacement fields. The TOM used is based on the material aproach. Thus, to make the domain is composed of a continuous distribution of material, enabling the use of classical models in nonlinear programming optimization problem, the microstructure is considered as a porous medium and its constitutive equation is a function only of the homogenized relative density of the material. In this approach, the actual properties of materials with intermediate densities are penalized based on an artificial microstructure model based on the SIMP (Solid Isotropic Material with Penalty). To circumvent problems chessboard and reduce dependence on layout in relation to the final optimal initial mesh, caused by problems of numerical instability, restrictions on components of the gradient of relative densities were applied. The optimization problem is solved by applying the augmented Lagrangian method, the solution being obtained by applying the finite element method of Galerkin, the process of approximation using the finite element Tetra4. This element has the ability to interpolate both the relative density and the displacement components and temperature. As for the definition of the problem, the heat load is assumed in steady state, i.e., the effects of conduction and convection of heat does not vary with time. The mechanical load is assumed static and distributed

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A neural approach to solve the problem defined by the economic load dispatch in power systems is presented in this paper, Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements the ability of neural networks to realize some complex nonlinear function makes them attractive for system optimization the neural networks applyed in economic load dispatch reported in literature sometimes fail to converge towards feasible equilibrium points the internal parameters of the modified Hopfield network developed here are computed using the valid-subspace technique These parameters guarantee the network convergence to feasible quilibrium points, A solution for the economic load dispatch problem corresponds to an equilibrium point of the network. Simulation results and comparative analysis in relation to other neural approaches are presented to illustrate efficiency of the proposed approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper shows the insertion of corona effect in a transmission line model based on lumped elements. The development is performed considering a frequency-dependent line representation by cascade of pi sections and state equations. Hence, the detailed profile of currents and voltages along the line, described from a non-homogeneous system of differential equations, can be obtained directly in time domain applying numerical or analytic solution integration methods. The corona discharge model is also based on lumped elements and is implemented from the well-know Skilling-Umoto Model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a non-model based technique to detect, locate, and characterize structural damage by combining the impedance-based structural health monitoring technique with an artificial neural network. The impedance-based structural health monitoring technique, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations (typically>30 kHz), this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors. In order to quantitatively assess the state of structures, two sets of artificial neural networks, which utilize measured electrical impedance signals for input patterns, were developed. By employing high frequency ranges and by incorporating neural network features, this technique is able to detect the damage in its early stage and to estimate the nature of damage without prior knowledge of the model of structures. The paper concludes with an experimental example, an investigation on a massive quarter scale model of a steel bridge section, in order to verify the performance of this proposed methodology.