973 resultados para Modal split.
Resumo:
A metodologia tradicional de identificação de parâmetros na análise modal de estruturas é realizada a partir de sinais medidos de força de entrada e de movimento de resposta da estrutura em condições laboratoriais controladas. Entretanto, quando é necessária a obtenção dos parâmetros modais de estruturas de máquinas em operação, as condições para controlar e medir a excitação nestas situações impossibilita a realização da análise modal tradicional. Neste caso, o teste modal é realizado utilizando somente dados de resposta do sistema. A Análise Modal Operacional (AMO) é um método de extração modal em que nenhuma excitação artificial necessita ser aplicada ao sistema, utilizando-se a própria excitação operacional como entrada para medição da resposta do sistema. A técnica clássica de Análise Modal Operacional NExT considera, para isso, que a excitação operacional do sistema seja um ruído branco. Esta técnica faz a consideração de que as funções de correlação obtidas de estruturas podem ser consideradas como funções de resposta ao impulso e então métodos tradicionais de identificação modal no domínio do tempo podem ser empregados. Entretanto, caso a excitação operacional contenha componentes harmônicos que se sobressaiam, estes podem ser confundidos como modos naturais do sistema. Neste trabalho é demonstrada que através da função densidade de probabilidade da banda estreita contendo o pico de um modo, é possível identifica-lo como natural ou operacional (proveniente da excitação operacional da estrutura). É apresentada também uma modificação no método de identificação modal Exponencial Complexa Mínimos Quadrados (LSCE), passando a considerar sinais harmônicos de freqüências conhecidas presentes na excitação operacional, em um ensaio utilizando a técnica NExT. Para validação desses métodos, utiliza-se um modelo teórico de parâmetros modais conhecidos analiticamente e como estudo de caso experimental, um sistema formado por uma viga bi-apoiada suportando um motor elétrico com desbalanceamento de massa.
Resumo:
Este trabalho apresenta uma metodologia para o estudo da ambiguidade na interpretação de dados geofísicos. Várias soluções alternativas, representativas da região de maior ambiguidade no espaço de parâmetros são obtidas, sendo posteriormente grupadas e ordenadas pela análise fatorial modo Q. Esta metodologia foi aplicada a dados sintéticos de campo potencial simulando-se causas de ambiguidade como discretização e truncamento da anomalia e a presença de ruídos aleatório e geológico. Um único prisma foi usado como modelo interpretativo, sendo a espessura a principal causa de ambiguidade tanto na gravimetria como na magnetometria. Segue-se a profundidade do topo sempre associada à espessura, quando o sinal da anomalia é alto. Quando a anomalia tem sinal baixo, a largura torna-se o segundo parâmetro mais importante, também associada à espessura. Ao contrário da presença de interferências geológicas, a presença de ruído aleatório nos campos, não é fator importante na ambiguidade. A aplicação da metodologia a dados reais ilustra o papel desta análise na caracterização de soluções alternativas e a importância da informação a priori na caracterização das causas de ambiguidade. A metodologia apresentada pode ser empregada em diversos estágios de um programa de prospecção fornecendo em cada estágio uma análise dos principais fatores causadores da ambiguidade, que poderá ser util no planejamento dos estágios seguintes. Comparada a outros métodos de análise de ambiguidade, como por exemplo regiões de confiança, a metodologia estudada destaca-se por não precisar satisfazer premissas estatísticas sobre a distribuição dos erros.
Resumo:
Purpose: The aim of this prospective study was to objectively evaluate inferior alveolar nerve (IAN) sensory disturbances in patients who underwent sagittal split ramus osteotomy (SSRO) by comparing 1 side treated with a reciprocating saw with the other side treated with a piezosurgery device.Materials and Methods: Clinical evaluation of IAN sensory disturbance was undertaken preoperatively and at 1 week, 4 weeks, 2 months, and 6 months postoperatively in 20 patients who underwent SSROat the Division of Oral and Maxillofacial Surgery, Araraquara Dental School, Sao Paulo State University. The 20 patients were examined at all periods for IAN functionality by Semmes-Weinstein testing; neither the patients nor the examiner knew which side was treated using piezosurgery or a reciprocating saw.Results: The mean age of the patients was 28.4 years (range, 20 to 48 yr). Before surgery, no patient had impaired function of the IAN in any of the 8 zones in the mental and inferior lip areas. All patients reported feeling the first monofilament at the time of the preoperative test. Seven days postoperatively, all patients reported some kind of altered sensitivity in at least 1 zone evaluated.Conclusions: The results of this study suggest there was no statistically significant difference in the sensitivity of the labiomental area regarding the instrument used to perform the osteotomy. Future studies will focus on enlarging the sample and evaluating the results. (C) 2014 American Association of Oral and Maxillofacial Surgeons
Resumo:
Objective: The aim of this study was to evaluate the 2-year clinical performance of class II restorations made with a composite resin with two different viscosities.Methods: 47 patients received two class II restorations (n = 94), one made with GrandioSO (conventional viscosity CV), and the other with GrandioSO Heavy Flow (flowable viscosity FV), subjecting both materials to the same clinical conditions. The self-etching adhesive Futurabond M was used for all restorations. The composites were inserted using the incremental technique. The restorations were evaluated using the modified USPHS criteria according to the periods: baseline, 6 months, 1 year and 2 years after restorative procedures.Results: After 24 months, 40 patients attended the recall and 78 restorations were evaluated. In all periods, no secondary caries was observed. After 6 months, there were slightly overall changes of scores for most parameters. After 24 months, the higher number of changes from score Alfa to Bravo was observed for marginal discolouration (32.5% CV and 39.5% FV) and colour match (15% CV and 31.6% FV), followed by proximal contact (25% CV and 23.7% FV) and marginal adaptation (20% CV and 21.1% FV). For wear, surface texture and postoperative sensitivity the changes were very small. Just two restorations were lost during the 24-month follow up. Less than 5% of all restorations showed postoperative sensitivity. Chi-square test showed no significant differences between the two materials for all parameters analysed.Conclusion: After 2 years of clinical service, no significant differences were observed between GrandioSO conventional and GrandioSO Heavy Flow for the parameters analysed. Both materials provided acceptable clinical behaviour in class II restorations. Clinical Significance: This study presents the possibility of using a flowable composite with high filler content, for performing class II restorations. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To evaluate the velocity of canine retraction, anchorage loss and changes on canine and first molar inclinations using self-ligating and conventional brackets.Materials and Methods: Twenty-five adults with Class I malocclusion and a treatment plan involving extractions of four first premolars were selected for this randomized split-mouth control trial. Patients had either conventional or self-ligating brackets bonded to maxillary canines randomly. Retraction was accomplished using 100-g nickel-titanium closed coil springs, which were reactivated every 4 weeks. Oblique radiographs were taken before and after canine retraction was completed, and the cephalograms were superimposed on stable structures of the maxilla. Cephalometric points were digitized twice by a blinded operator for error control, and the following landmarks were collected: canine cusp and apex horizontal changes, molar cusp and apex horizontal changes, and angulation changes in canines and molars. The blinded data, which were normally distributed, were analyzed through paired t-tests for group differences.Results: No differences were found between the two groups for all variables tested.Conclusions: Both brackets showed the same velocity of canine retraction and loss of anteroposterior anchorage of the molars. No changes were found between brackets regarding the inclination of canines and first molars.
Resumo:
In this paper, natural frequencies were analyzed (axial, torsional and flexural) and frequency response of a vertical rotor with a hard disk at the edge through the classical modal and complex analysis. The equation that rules the movement was obtained through the Lagrangian formulation. The model considered the effects of bending, torsion and axial deformation of the shaft, besides the gravitational and gyroscopic effects. The finite element method was used to discretize the structure into hollow cylindrical elements with 12 degrees of freedom. Mass, stiffness and gyroscopic matrices were explained consistently. The classical modal analysis, usually applied to stationary structures, does not consider an important characteristic of rotating machinery which are the methods of forward and backward whirl. Initially, through the traditional modal analysis, axial and torsional natural frequencies were obtained in a static shaft, since they do not suffer the influence of gyroscopic effects. Later research was performed by complex modal analysis. This type of tool, based on the use of complex coordinates to describe the dynamic behavior of rotating shaft, allows the decomposition of the system in two submodes, backward and forward. Thus, it is possible to clearly visualize that the orbit and direction of the precessional motion around the line of the rotating shaft is not deformed. A finite element program was developed using MATLAB (TM) and numerical simulations were performed to validate this model. Natural frequencies and directional frequency forced response (dFRF) were obtained using the complex modal analysis for a simple vertical rotor and also for a typical drill string used in the construction of oil wells.
Resumo:
This paper aims to contribute with the studies on the modal verb poder as an auxiliary verb, by analyzing, from a functionalist perspective, how it behaves, both in Brazilian Portuguese and Spanish, in self-help discourse. In order to do so, we have resorted to the classification of modalities by Hengeveld (2004), with special focus on the notions of target of evaluation and domain of evaluation.
Resumo:
The sagittal split ramus osteotomy (SSRO) is a surgical technique used widely to treat many congenital and acquired mandibular discrepancies. Stabilization of the osteotomy site and the potential for skeletal relapse after the procedure are still major problems. The aim of this study was to compare the mechanical stability of six methods of rigid fixation in SSRO using a biomechanical test model. Sixty polyurethane replicas of human hemimandibles were divided into six groups. In group I, the osteotomies were fixed with two four-hole titanium miniplates; in group II, with one four-hole miniplate; in group III, with one four-hole miniplate + a bicortical screw; in group IV, with a grid miniplate; in group V, with a four-hole locking miniplate; and in group VI, with a six-hole miniplate. A linear load in the premolar region was applied to the hemimandibles. The resistance forces (N) needed to displace the distal segment by 1, 3, and 5 mm were recorded and the data transmitted from the load cell to a computer. One-way analysis of variance with Tukey's post hoc test was performed to compare the means between groups. For the three displacement conditions, there was a strong tendency for the 2.0-mm plate + screw and the grid plate to have higher values.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: The management of aggressive periodontitis (AgP) represents a challenge for clinicians because there are no standardized protocols for an efficient control of the disease. This randomized controlled clinical trial evaluated the effects of repeated applications of antimicrobial photodynamic therapy (aPDT) adjunctive to scaling and root planing (SRP) in patients with AgP. Methods: Using a split-mouth design, 20 patients with generalized AgP were treated with aPDT + SRP (test group) or SRP only (control group). aPDT was applied at four periods. All patients were monitored for 90 days. Clinical, microbiologic, and immunologic parameters were statistically analyzed. Results: In deep periodontal pocket analysis (probing depth [PD] >= 7 mm at baseline), the test group presented a decrease in PD and a clinical attachment gain significantly higher than the control group at 90 days (P < 0.05). The test group also demonstrated significantly less periodontal pathogens of red and orange complexes and a lower interleukin-1 beta/interleukin-10 ratio than the control group (P < 0.05). Conclusion: The application of four sessions of aPDT, adjunctive to SRP, promotes additional clinical, microbiologic, and immunologic benefits in the treatment of deep periodontal pockets in single-rooted teeth in patients with AgP.
Resumo:
The article discusses a proposal of displacement measurement using a unique digital camera aiming at to exploit its feasibility for Modal Analysis applications. The proposal discusses a non-contact measuring approach able to measure multiple points simultaneously by using a unique digital camera. A modal analysis of a reduced scale lab building structure based only at the responses of the structure measured with the camera is presented. It focuses at the feasibility of using a simple ordinary camera for performing the output only modal analysis of structures and its advantage. The modal parameters of the structure are estimated from the camera data and also by using ordinary experimental modal analysis based on the Frequency Response Function (FRF) obtained by using the usual sensors like accelerometer and force cell. The comparison of the both analysis showed that the technique is promising noncontact measuring tool relatively simple and effective to be used in structural modal analysis
Resumo:
Purpose The aim of this prospective study was to objectively evaluate the inferior alveolar nerve (IAN) sensory disturbances in patients who underwent sagittal split ramus osteotomy (SSRO) and its spontaneous recovery and to define the incidence of sensibility loss, time, and area at which the recovery occurs. Patients and Methods Clinical evaluation of the IAN sensory disturbance was undertaken preoperatively and at the first week, fourth week, 2 months, and 6 months postoperatively in 30 patients who underwent SSRO at the Oral and Maxillofacial Surgery Division of the Araraquara Dental School--Unesp and at the Plastic Surgery Division of the Medical Sciences School--Unicamp. The 30 patients were examined at all periods regarding the IAN functionality by Semmes-Weinstein testing. Results The mean age of the patients included in this study was 29.36 years old. All patients showed sensibility loss at the 7-day evaluation time. The comparison between sides, gender, and age did not show any significant difference. In most of the examined zone, the data collected at 6 months were statistically similar to the data collected at the preoperative period. All zones presented significant recovery, starting from 30 days after surgery. Twenty patients had total spontaneous recovery at the final period, in all examined zones. Conclusions The SSRO presents the disadvantage of temporary paresthesia; however, spontaneous nerve function recovery does occur. The Semmes-Weinstein test is a reliable, inexpensive, and easy-to-apply tool, which can be used for clinical evaluation on a daily basis at offices and hospitals.
Resumo:
Natural frequencies were analyzed (axial, torsional and flexural) and frequency response of a vertical rotor with a hard disk at the edge through the classical and complex modal analysis. The mathematical modeling was based on the theory of Euler-Bernoulli beam. The equation that rules the movement was obtained through the Lagrangian formulation. The model considered the effects of bending, torsion and axial deformation of the shaft, besides the gravitational and gyroscopic effects. The finite element method was used to discretize the structure into hollow cylindrical elements with 12 degrees of freedom. Mass, stiffness and gyroscopic matrices were explained consistently. This type of tool, based on the use of complex coordinates to describe the dynamic behavior of rotating shaft, allows the decomposition of the system in two submodes, backward and forward. Thus, it is possible to clearly visualize that the orbit and direction of the precessional motion around the line of the rotating shaft is not deformed. A finite element program was developed using Matlab ®, and numerical simulations were performed to validate this model.