987 resultados para Mineral resources
Resumo:
Recent sediments with distinct signs of hydrothermal alteration sampled in the Hess Deep(Galapagos Ridge, East Pacific Rise) contained a piece of ash-gray rock, which differed from other rock fragments by degree of consolidation, conchoidal fracture, and had properties of asbestos. Our studies found that the sample represented mixture of asbestos-like pyroxene of diopside-hedenbergite composition, amphibole of tremolite composition and a new mineral, which basic structure consisted of bands of triple pyroxene chains with the radical [Si6O16]. The latter can be regarded as intermediate between amphiboles and layered silicates. Also in some parts of the sample presence of trioctahedral vermiculite-chlorite was indicated. Genesis of the studied asbestos rock is considered from the standpoint of high-temperature hydrothermal-metasomatic alteration of sediment by post-magmatic mineralized halide solutions.
Resumo:
Data on concentrations of the major ions (Cl, SO4, Alk, Na, K, Ca, Mg, NH4) in interstitial waters from sediments of three brine-bearing deeps of the Red Sea rift zone are reported. Interstitial waters of the Atlantis-II Deep have the highest salinity (310.1 g/l), of the Discovery Deep - slightly lower (298.8 g/l), and of the Suakin Deep - the lowest (159.9 g/l). Interstitial waters of all three deeps are characterized by low, compared with sea water, absolute and relative concentrations of Mg and SO4 ions and have extremely low alkaline reserve (0.15-0.64 meq/l). Concentrations of K, Ca and especially Na and Cl ions, as compared with sea water, are highly increased. Interstitial waters from the deeps in study have high, compared with sea water, concentrations of NH4 (12-62 mg/l).
Resumo:
Composition of ore minerals in MAR sulflde occurrences related to ultramaflc rocks was studied using methods of mineragraphy, electron microscopy, microprobe analysis, and X-ray analysis. Objects are located at various levels of maturity of sulflde mounds owing to differences in age, duration and degree of activity of the following hydrothermal systems: generally inactive Logatchev-1 field (up to 66.5 ka old), inactive Logatchev-2 field (3.9 ka), and generally active Rainbow field (up to 23 ka). Relative to MAR submarine ore occurrences in the basalt substrate, mineralization in the hydrothermal fields mentioned above is characterized by high contents of Au, Cd, Co, and Ni, along with presence of accessory minerals of Co and Ni. The studied mounds differ in quantitative ratios of major minerals and structural-textural features of ores that suggest their transformation. Ores in the Logatchev-1 field are characterized by the highest Cu content and development of a wide range of multistage contrast exsolution structures of isocubanite and bornite. In the Logatchev-2 field, sphalerite-chalcopyrite and gold-arsenic exsolution structures are present, but isocubanite exsolution structures are less diverse and contrast. The Rainbow field is marked by presence of homogenous isocubanite and the subordinate development of exsolution structures. The authors have identified four new phases in the Cu-Fe-S system. Phases X and Y (close to chalcopyrite and isocubanite, respectively) make up lamellae among isocubanite exsolution products in the Logatchev-1 and Logatchev-2 fields. Phase Y includes homogenous zones in zonal chimneys of the Rainbow field. Phases A and B formed in the orange bornite domain at low-temperature alteration of chalcopyrite in the Logatchev-1 field. Mineral assemblages of the Cu-S system are most abundant and diverse in the Logatchev-1 field, but their development is minimal in the Logatchev-2 field where mainly Cu-poor sulfides of the geerite-covellite series have been identified. Specific features of mineral assemblages mentioned above reflect the maturity grade of sulfide mounds and can serve as indicators of maturity.
Resumo:
Petrographic and geochemical study of basalts in the Kerguelen Plateau basement revealed changes in composition and character of volcanism during development of this tectonovolcanic structure. The Kerguelen Plateau is one of the largest intraplate rises in the World Ocean. It started to form about 120 Ma ago. Age of basalts and overlying sediments shows that plateau formation was in the northwest direction. Basalts of the Kerguelen Plateau basement are products of tholeiitic melts in terms of geochemistry, but differ from mid-ocean ridge basalt (MORB). They are enriched in incompatible trace elements and rare earth elements (REE) relative to MORB, and degree of enrichment varies in basalts from different segments of the plateau. Composition of basalts does not directly depend on their age. Specific features of plateau magmatism are commonly explained in terms of a long-living deep magma plume, which variously interacted with a depleted upper mantle source at different stages of plateau formation. However, taking into account block morphology and deep structure of the plateau, one can suggest that plateau volcanism was initiated by a large fault. As the volcanism prograded to the northwest, depth of fault penetration into the mantle changed. Composition of basalts in the plateau basement was also governed by formation depth of primary melts.
Resumo:
An analysis of data on the location of hydrothermal fields, seismicity, and satellite altimetry evidences that in mid-ocean ridges with low spreading rate hydrothermal fields tend to be grouped in areas with generally low seismic activity and at intersections of discontinuities and rift zones. Based on this assumption, the Sierra Leone Fracture Zone was studied in 2000 during Cruise 22 of R/V Akademik Nikolaj Strakhov. A study of gabbrodolerite and dolerite showed that sulfide ore minerals in them were formed both by hydrothermal and magmatic processes. An analysis of melt inclusions demonstrated that magmatic complexes formed from a high-temperature (1210-1255°C) low-potassium melt of the N-MORB type. Investigations of fluid inclusions revealed that gabbro and dolerite formed under influence of an active hydrothermal system at temperature 205-226°C. Thus, the Sierra Leone Fracture Zone is considered to be perspective for a discovery of a new hydrothermal field.
Resumo:
Iron and manganese in bottom sediments studied along the sublatitudinal transect from Kandalaksha to Arkhangelsk are characterized by various contents and speciations depending on sedimentation environment, grain size of sediments, and diagenetic processes. The latter include redistribution of reactive forms leading to enrichment in Fe and Mn of surface sediments, formation of films, incrustations, and ferromanganese nodules. Variations in total Fe content (2-8%) are accompanied by changes in concentration of its reactive forms (acid extraction) and concentration of dissolved Fe in interstitial waters (1-14 µM). Variations in Mn content in bottom sediments (0.03-3.7%) and interstitial waters (up to 500 µM) correspond to high diagenetic mobility of this element. Changes in oxidation degree of chemical elements result in redox stratification of sediment strata with maximum concentrations of Fe, Mn, and sulfides. Organic matter of bottom sediments with considerable terrestrial constituent is oxidized by bottom water oxygen mainly at the sediment surface or in anaerobic conditions within the sediment strata. The role of inorganic components in organic matter oxidation changes from surface layer bottom sediments (where manganese oxyhydroxide dominates among oxidants) to deeper layers (where sulfate of interstitial water serves as the main oxidant). Differences in river runoff and hydrodynamics are responsible for geochemical asymmetry of the transect. The deep Kandalaksha Bay serves as a sediment trap for manganese (Mn content in sediments varies within 0.5-0.7%), whereas the sedimentary environment in the Dvina Bay promotes its removal from bottom sediments (Mn 0.05%).