872 resultados para Micro Tomography
Resumo:
This paper describes a realistic simulator for the Computed Tomography (CT) scan process for motion analysis. In fact, we are currently developing a new framework to find small motion from the CT scan. In order to prove the fidelity of this framework, or potentially any other algorithm, we present in this paper a simulator to simulate the whole CT acquisition process with a priori known parameters. In other words, it is a digital phantom for the motion analysis that can be used to compare the results of any related algorithm with the ground-truth realistic analytical model. Such a simulator can be used by the community to test different algorithms in the biomedical imaging domain. The most important features of this simulator are its different considerations to simulate the best the real acquisition process and its generality.
Resumo:
The compounds responsible for the colours and decorations in glass and glazed ceramics include: colouring agents (transition metal ions), pigments (micro-and nano-precipitates of compounds that either do not dissolve or recrystallize in the glassy matrix) and opacifiers (microcrystalline compounds with high light scattering capability). Their composition, structure and range of stability are highly dependent not only on the composition but also on the procedures followed to obtain them. Chemical composition of the colorants and crystallites may be obtained by means of SEM-EDX and WDX. Synchrotron Radiation micro-X-ray Diffraction has a small beam size adequate (10 to 50 microns footprint size) to obtain the structural information of crystalline compounds and high brilliance, optimal for determining the crystallites even when present in low amounts. In addition, in glass decorations the crystallites often appear forming thin layers (from 10 to 100 micrometers thick) and they show a depth dependent composition and crystal structure. Their nature and distribution across the glass/glazes decorations gives direct information on the technology of production and stability and may be related to the color and appearance. A selection of glass and glaze coloring agents and decorations are studied by means of SR-micro- XRD and SEM-EDX including: manganese brown, antimony yellow, red copper lusters and cobalt blue. The selection includes Medieval (Islamic, and Hispano Moresque) and renaissance tin glazed ceramics from the 10th to the 17th century AD.
Resumo:
Acoustic waveform inversions are an increasingly popular tool for extracting subsurface information from seismic data. They are computationally much more efficient than elastic inversions. Naturally, an inherent disadvantage is that any elastic effects present in the recorded data are ignored in acoustic inversions. We investigate the extent to which elastic effects influence seismic crosshole data. Our numerical modeling studies reveal that in the presence of high contrast interfaces, at which P-to-S conversions occur, elastic effects can dominate the seismic sections, even for experiments involving pressure sources and pressure receivers. Comparisons of waveform inversion results using a purely acoustic algorithm on synthetic data that is either acoustic or elastic, show that subsurface models comprising small low-to-medium contrast (?30%) structures can be successfully resolved in the acoustic approximation. However, in the presence of extended high-contrast anomalous bodies, P-to-S-conversions may substantially degrade the quality of the tomographic images. In particular, extended low-velocity zones are difficult to image. Likewise, relatively small low-velocity features are unresolved, even when advanced a priori information is included. One option for mitigating elastic effects is data windowing, which suppresses later arriving seismic arrivals, such as shear waves. Our tests of this approach found it to be inappropriate because elastic effects are also included in earlier arriving wavetrains. Furthermore, data windowing removes later arriving P-wave phases that may provide critical constraints on the tomograms. Finally, we investigated the extent to which acoustic inversions of elastic data are useful for time-lapse analyses of high contrast engineered structures, for which accurate reconstruction of the subsurface structure is not as critical as imaging differential changes between sequential experiments. Based on a realistic scenario for monitoring a radioactive waste repository, we demonstrated that acoustic inversions of elastic data yield substantial distortions of the tomograms and also unreliable information on trends in the velocity changes.
Resumo:
BACKGROUND: To compare morphological gross tumor volumes (GTVs), defined as pre- and postoperative gadolinium enhancement on T1-weighted magnetic resonance imaging to biological tumor volumes (BTVs), defined by the uptake of (18)F fluoroethyltyrosine (FET) for the radiotherapy planning of high-grade glioma, using a dedicated positron emission tomography (PET)-CT scanner equipped with three triangulation lasers for patient positioning. METHODS: Nineteen patients with malignant glioma were included into a prospective protocol using FET PET-CT for radiotherapy planning. To be eligible, patients had to present with residual disease after surgery. Planning was performed using the clinical target volume (CTV = GTV union or logical sum BTV) and planning target volume (PTV = CTV + 20 mm). First, the interrater reliability for BTV delineation was assessed among three observers. Second, the BTV and GTV were quantified and compared. Finally, the geometrical relationships between GTV and BTV were assessed. RESULTS: Interrater agreement for BTV delineation was excellent (intraclass correlation coefficient 0.9). Although, BTVs and GTVs were not significantly different (p = 0.9), CTVs (mean 57.8 +/- 30.4 cm(3)) were significantly larger than BTVs (mean 42.1 +/- 24.4 cm(3); p < 0.01) or GTVs (mean 38.7 +/- 25.7 cm(3); p < 0.01). In 13 (68%) and 6 (32%) of 19 patients, FET uptake extended >or= 10 and 20 mm from the margin of the gadolinium enhancement. CONCLUSION: Using FET, the interrater reliability had excellent agreement for BTV delineation. With FET PET-CT planning, the size and geometrical location of GTVs and BTVs differed in a majority of patients.
Resumo:
El present projecte està enfocat en la mecanització de micro-canals, on la fabricació anivell micro s’entén per a mecanitzacions de menys de 1 mil•límetre, mitjançantl’electroerosió i s’emmarca dins el grup de recerca en enginyeria del producte procés iproducció (GREP) de la universitat de Girona. Avui en dia la biomedicina és un sectorque està creixent i representa una gran oportunitat per a aquest tipus de mecanitzat, jaque alguns productes són de mida micromètrica i es necessita una alternativa almecanitzat tradicional per tal d’abaratir costos, guanyar precisió i qualitat superficial.La mecanització de micro-canals, geometria utilitzada en aquest sector, de granprecisió i elevat acabat superficial són requisits necessaris per donar respostes a lesnecessitats d’aquest camp. L’acer inoxidable 316L és un material molt utilitzat enbiomedicina gràcies a la seva biocompatibilitat. Exemples de la seva aplicació podenser els implants, les pròtesis, utensilis mèdics, etc
Resumo:
A simple and most promising oxide-assisted catalyst-free method is used to prepare silicon nitride nanowires that give rise to high yield in a short time. After a brief analysis of the state of the art, we reveal the crucial role played by the oxygen partial pressure: when oxygen partial pressure is slightly below the threshold of passive oxidation, a high yield inhibiting the formation of any silica layer covering the nanowires occurs and thanks to the synthesis temperature one can control nanowire dimensions
Resumo:
The atomic force microscope is a convenient tool to probe living samples at the nanometric scale. Among its numerous capabilities, the instrument can be operated as a nano-indenter to gather information about the mechanical properties of the sample. In this operating mode, the deformation of the cantilever is displayed as a function of the indentation depth of the tip into the sample. Fitting this curve with different theoretical models permits us to estimate the Young's modulus of the sample at the indentation spot. We describe what to our knowledge is a new technique to process these curves to distinguish structures of different stiffness buried into the bulk of the sample. The working principle of this new imaging technique has been verified by finite element models and successfully applied to living cells.
Resumo:
The state of the art to describe image quality in medical imaging is to assess the performance of an observer conducting a task of clinical interest. This can be done by using a model observer leading to a figure of merit such as the signal-to-noise ratio (SNR). Using the non-prewhitening (NPW) model observer, we objectively characterised the evolution of its figure of merit in various acquisition conditions. The NPW model observer usually requires the use of the modulation transfer function (MTF) as well as noise power spectra. However, although the computation of the MTF poses no problem when dealing with the traditional filtered back-projection (FBP) algorithm, this is not the case when using iterative reconstruction (IR) algorithms, such as adaptive statistical iterative reconstruction (ASIR) or model-based iterative reconstruction (MBIR). Given that the target transfer function (TTF) had already shown it could accurately express the system resolution even with non-linear algorithms, we decided to tune the NPW model observer, replacing the standard MTF by the TTF. It was estimated using a custom-made phantom containing cylindrical inserts surrounded by water. The contrast differences between the inserts and water were plotted for each acquisition condition. Then, mathematical transformations were performed leading to the TTF. As expected, the first results showed a dependency of the image contrast and noise levels on the TTF for both ASIR and MBIR. Moreover, FBP also proved to be dependent of the contrast and noise when using the lung kernel. Those results were then introduced in the NPW model observer. We observed an enhancement of SNR every time we switched from FBP to ASIR to MBIR. IR algorithms greatly improve image quality, especially in low-dose conditions. Based on our results, the use of MBIR could lead to further dose reduction in several clinical applications.
Resumo:
The purpose of this study was to assess the spatial resolution of a computed tomography (CT) scanner with an automatic approach developed for routine quality controls when varying CT parameters. The methods available to assess the modulation transfer functions (MTF) with the automatic approach were Droege's and the bead point source (BPS) methods. These MTFs were compared with presampled ones obtained using Boone's method. The results show that Droege's method is not accurate in the low-frequency range, whereas the BPS method is highly sensitive to image noise. While both methods are well adapted to routine stability controls, it was shown that they are not able to provide absolute measurements. On the other hand, Boone's method, which is robust with respect to aliasing, more resilient to noise and provides absolute measurements, satisfies the commissioning requirements perfectly. Thus, Boone's method combined with a modified Catphan 600 phantom could be a good solution to assess CT spatial resolution in the different CT planes.
Resumo:
Our goal was to evaluate the diagnostic utility of C-reactive protein (CRP) alone or combined with clinical probability assessment in patients with suspected pulmonary embolism (PE), and to compare its performance to a D-dimer assay. We conducted a prospective study in which we performed a common immuno-turbidimetric CRP test and a rapid enzyme-linked immunosorbent assay (ELISA) D-dimer test in 259 consecutive outpatients with suspected PE at the emergency department of a teaching hospital. We assessed clinical probability of PE by a validated prediction rule overridden by clinical judgment. Patients with D-dimer levels > or = 500 microg/l underwent a work-up consisting of lower-limb venous ultrasound, spiral computerized tomography, ventilation-perfusion scan, or pulmonary angiography. Patients were followed up for three months. Seventy-seven (30%) of the patients had PE. The CRP alone had a sensitivity of 84% (95% confidence interval [CI).: 74 to 92%) and a negative predictive value (NPV) of 87% (95% CI: 78 to 93%) at a cutpoint of 5 mg/l. Overall, 61 (24%) patients with a low clinical probability of PE had a CRP < 5 mg/l. Due to the low prevalence of PE (9%) in this subgroup, the NPV increased to 97% (95% CI: 89 to 100%). The D-dimer (cutpoint 500 micro g/l) showed a sensitivity of 100% (95% CI: 95 to 100%) and a NPV of 100% (95% CI: 94 to 100%) irrespective of clinical probability and accurately rule out PE in 56 (22%) patients. Standard CRP tests alone or combined with clinical probability assessment cannot safely exclude PE.