921 resultados para Mechanics.
Resumo:
Non-Equilibrium Statistical Mechanics is a broad subject. Grossly speaking, it deals with systems which have not yet relaxed to an equilibrium state, or else with systems which are in a steady non-equilibrium state, or with more general situations. They are characterized by external forcing and internal fluxes, resulting in a net production of entropy which quantifies dissipation and the extent by which, by the Second Law of Thermodynamics, time-reversal invariance is broken. In this thesis we discuss some of the mathematical structures involved with generic discrete-state-space non-equilibrium systems, that we depict with networks in all analogous to electrical networks. We define suitable observables and derive their linear regime relationships, we discuss a duality between external and internal observables that reverses the role of the system and of the environment, we show that network observables serve as constraints for a derivation of the minimum entropy production principle. We dwell on deep combinatorial aspects regarding linear response determinants, which are related to spanning tree polynomials in graph theory, and we give a geometrical interpretation of observables in terms of Wilson loops of a connection and gauge degrees of freedom. We specialize the formalism to continuous-time Markov chains, we give a physical interpretation for observables in terms of locally detailed balanced rates, we prove many variants of the fluctuation theorem, and show that a well-known expression for the entropy production due to Schnakenberg descends from considerations of gauge invariance, where the gauge symmetry is related to the freedom in the choice of a prior probability distribution. As an additional topic of geometrical flavor related to continuous-time Markov chains, we discuss the Fisher-Rao geometry of nonequilibrium decay modes, showing that the Fisher matrix contains information about many aspects of non-equilibrium behavior, including non-equilibrium phase transitions and superposition of modes. We establish a sort of statistical equivalence principle and discuss the behavior of the Fisher matrix under time-reversal. To conclude, we propose that geometry and combinatorics might greatly increase our understanding of nonequilibrium phenomena.
Resumo:
Biologische Membranen sind Fettmolekül-Doppelschichten, die sich wie zweidimensionale Flüssigkeiten verhalten. Die Energie einer solchen fluiden Oberfläche kann häufig mit Hilfe eines Hamiltonians beschrieben werden, der invariant unter Reparametrisierungen der Oberfläche ist und nur von ihrer Geometrie abhängt. Beiträge innerer Freiheitsgrade und der Umgebung können in den Formalismus mit einbezogen werden. Dieser Ansatz wird in der vorliegenden Arbeit dazu verwendet, die Mechanik fluider Membranen und ähnlicher Oberflächen zu untersuchen. Spannungen und Drehmomente in der Oberfläche lassen sich durch kovariante Tensoren ausdrücken. Diese können dann z. B. dazu verwendet werden, die Gleichgewichtsposition der Kontaktlinie zu bestimmen, an der sich zwei aneinander haftende Oberflächen voneinander trennen. Mit Ausnahme von Kapillarphänomenen ist die Oberflächenenergie nicht nur abhängig von Translationen der Kontaktlinie, sondern auch von Änderungen in der Steigung oder sogar Krümmung. Die sich ergebenden Randbedingungen entsprechen den Gleichgewichtsbedingungen an Kräfte und Drehmomente, falls sich die Kontaktlinie frei bewegen kann. Wenn eine der Oberflächen starr ist, muss die Variation lokal dieser Fläche folgen. Spannungen und Drehmomente tragen dann zu einer einzigen Gleichgewichtsbedingung bei; ihre Beiträge können nicht mehr einzeln identifiziert werden. Um quantitative Aussagen über das Verhalten einer fluiden Oberfläche zu machen, müssen ihre elastischen Eigenschaften bekannt sein. Der "Nanotrommel"-Versuchsaufbau ermöglicht es, Membraneigenschaften lokal zu untersuchen: Er besteht aus einer porenüberspannenden Membran, die während des Experiments durch die Spitze eines Rasterkraftmikroskops in die Pore gedrückt wird. Der lineare Verlauf der resultierenden Kraft-Abstands-Kurven kann mit Hilfe der in dieser Arbeit entwickelten Theorie reproduziert werden, wenn der Einfluss von Adhäsion zwischen Spitze und Membran vernachlässigt wird. Bezieht man diesen Effekt in die Rechnungen mit ein, ändert sich das Resultat erheblich: Kraft-Abstands-Kurven sind nicht länger linear, Hysterese und nichtverschwindende Trennkräfte treten auf. Die Voraussagen der Rechnungen könnten in zukünftigen Experimenten dazu verwendet werden, Parameter wie die Biegesteifigkeit der Membran mit einer Auflösung im Nanometerbereich zu bestimmen. Wenn die Materialeigenschaften bekannt sind, können Probleme der Membranmechanik genauer betrachtet werden. Oberflächenvermittelte Wechselwirkungen sind in diesem Zusammenhang ein interessantes Beispiel. Mit Hilfe des oben erwähnten Spannungstensors können analytische Ausdrücke für die krümmungsvermittelte Kraft zwischen zwei Teilchen, die z. B. Proteine repräsentieren, hergeleitet werden. Zusätzlich wird das Gleichgewicht der Kräfte und Drehmomente genutzt, um mehrere Bedingungen an die Geometrie der Membran abzuleiten. Für den Fall zweier unendlich langer Zylinder auf der Membran werden diese Bedingungen zusammen mit Profilberechnungen kombiniert, um quantitative Aussagen über die Wechselwirkung zu treffen. Theorie und Experiment stoßen an ihre Grenzen, wenn es darum geht, die Relevanz von krümmungsvermittelten Wechselwirkungen in der biologischen Zelle korrekt zu beurteilen. In einem solchen Fall bieten Computersimulationen einen alternativen Ansatz: Die hier präsentierten Simulationen sagen voraus, dass Proteine zusammenfinden und Membranbläschen (Vesikel) bilden können, sobald jedes der Proteine eine Mindestkrümmung in der Membran induziert. Der Radius der Vesikel hängt dabei stark von der lokal aufgeprägten Krümmung ab. Das Resultat der Simulationen wird in dieser Arbeit durch ein approximatives theoretisches Modell qualitativ bestätigt.
Resumo:
Over the years the Differential Quadrature (DQ) method has distinguished because of its high accuracy, straightforward implementation and general ap- plication to a variety of problems. There has been an increase in this topic by several researchers who experienced significant development in the last years. DQ is essentially a generalization of the popular Gaussian Quadrature (GQ) used for numerical integration functions. GQ approximates a finite in- tegral as a weighted sum of integrand values at selected points in a problem domain whereas DQ approximate the derivatives of a smooth function at a point as a weighted sum of function values at selected nodes. A direct appli- cation of this elegant methodology is to solve ordinary and partial differential equations. Furthermore in recent years the DQ formulation has been gener- alized in the weighting coefficients computations to let the approach to be more flexible and accurate. As a result it has been indicated as Generalized Differential Quadrature (GDQ) method. However the applicability of GDQ in its original form is still limited. It has been proven to fail for problems with strong material discontinuities as well as problems involving singularities and irregularities. On the other hand the very well-known Finite Element (FE) method could overcome these issues because it subdivides the computational domain into a certain number of elements in which the solution is calculated. Recently, some researchers have been studying a numerical technique which could use the advantages of the GDQ method and the advantages of FE method. This methodology has got different names among each research group, it will be indicated here as Generalized Differential Quadrature Finite Element Method (GDQFEM).
Resumo:
Fracture mechanics plays an important role in the material science, structure design and industrial production due to the failure of materials and structures are paid high attention in human activities. This dissertation, concentrates on some of the fractural aspects of shaft and composite which have being increasingly used in modern structures, consists four chapters within two parts. Chapters 1 to 4 are included in part 1. In the first chapter, the basic knowledge about the stress and displacement fields in the vicinity of a crack tip is introduced. A review involves the general methods of calculating stress intensity factors are presented. In Chapter 2, two simple engineering methods for a fast and close approximation of stress intensity factors of cracked or notched beams under tension, bending moment, shear force, as well as torque are presented. New formulae for calculating the stress intensity factors are proposed. One of the methods named Section Method is improved and applied to the three dimensional analysis of cracked circular section for calculating stress intensity factors. The comparisons between the present results and the solutions calculated by ABAQUS for single mode and mixed mode are studied. In chapter 3, fracture criteria for a crack subjected to mixed mode loading of two-dimension and three-dimension are reviewed. The crack extension angle for single mode and mixed mode, and the critical loading domain obtained by SEDF and MTS are compared. The effects of the crack depth and the applied force ratio on the crack propagation angle and the critical loading are investigated. Three different methods calculating the crack initiation angle for three-dimension analysis of various crack depth and crack position are compared. It should be noted that the stress intensity factors used in the criteria are calculated in section 2.1.
Resumo:
This thesis provides a thoroughly theoretical background in network theory and shows novel applications to real problems and data. In the first chapter a general introduction to network ensembles is given, and the relations with “standard” equilibrium statistical mechanics are described. Moreover, an entropy measure is considered to analyze statistical properties of the integrated PPI-signalling-mRNA expression networks in different cases. In the second chapter multilayer networks are introduced to evaluate and quantify the correlations between real interdependent networks. Multiplex networks describing citation-collaboration interactions and patterns in colorectal cancer are presented. The last chapter is completely dedicated to control theory and its relation with network theory. We characterise how the structural controllability of a network is affected by the fraction of low in-degree and low out-degree nodes. Finally, we present a novel approach to the controllability of multiplex networks
Resumo:
Die vorliegende Arbeit behandelt die Anwendung der Rasterkraftmikroskopie auf die Untersuchung mesostrukturierter Materialien. Mesostrukturierte Materialien setzen sich aus einzelnen mesoskopen Bausteinen zusammen. Diese Untereinheiten bestimmen im Wesentlichen ihr charakteristisches Verhalten auf äußere mechanische oder elektrische Reize, weshalb diesen Materialien eine besondere Rolle in der Natur sowie im täglichen Leben zukommt. Ein genaues Verständnis der Selbstorganisation dieser Materialien und der Wechselwirkung der einzelnen Bausteine untereinander ist daher von essentieller Bedeutung zur Entwicklung neuer Synthesestrategien sowie zur Optimierung ihrer Materialeigenschaften. Die Charakterisierung dieser mesostrukturierten Materialien erfolgt üblicherweise mittels makroskopischer Analysemethoden wie der dielektrischen Breitbandspektroskopie, Thermogravimetrie sowie in Biegungsexperimenten. In dieser Arbeit wird gezeigt, wie sich diese Analysemethoden mit der Rasterkraftmikroskopie verbinden lassen, um mesostrukturierte Materialien zu untersuchen. Die Rasterkraftmikroskopie bietet die Möglichkeit, die Oberfläche eines Materials abzubilden und zusätzlich dazu seine quantitativen Eigenschaften, wie die mechanische Biegefestigkeit oder die dielektrische Relaxation, zu bestimmen. Die Übertragung makroskopischer Analyseverfahren auf den Nano- bzw. Mikrometermaßstab mittels der Rasterkraftmikroskopie erlaubt die Charakterisierung von räumlich sehr begrenzten Proben bzw. von Proben, die nur in einer sehr kleinen Menge (<10 mg) vorliegen. Darüberhinaus umfasst das Auflösungsvermögen eines Rasterkraftmikroskops, welche durch die Größe seines Federbalkens (50 µm) sowie seines Spitzenradius (5 nm) definiert ist, genau den Längenskalenbereich, der einzelne Atome mit der makroskopischen Welt verbindet, nämlich die Mesoskala. In dieser Arbeit werden Polymerfilme, kolloidale Nanofasern sowie Biomineralien ausführlicher untersucht.rnIm ersten Projekt werden mittels Rasterkraftmikroskopie dielektrische Spektren von mischbaren Polymerfilmen aufgenommen und mit ihrer lokalen Oberflächenstruktur korreliert. Im zweiten Projekt wird die Rasterkraftmikroskopie eingesetzt, um Biegeexperimente an kolloidalen Nanofasern durchzuführen und so ihre Brucheigenschaften genauer zu untersuchen. Im letzten Projekt findet diese Methode Anwendung bei der Charakterisierung der Biegeeigenschaften von Biomineralien. Des Weiteren erfolgt eine Analyse der organischen Zusammensetzung dieser Biomineralien. Alle diese Projekte demonstrieren die vielseitige Einsetzbarkeit der Rasterkraftmikroskopie zur Charakterisierung mesostrukturierter Materialien. Die Korrelation ihrer mechanischen und dielektrischen Eigenschaften mit ihrer topographischen Beschaffenheit erlaubt ein tieferes Verständnis der mesoskopischen Materialien und ihres Verhaltens auf die Einwirkung äußerer Stimuli.rn
Resumo:
The subject of this work concerns the study of the immigration phenomenon, with emphasis on the aspects related to the integration of an immigrant population in a hosting one. Aim of this work is to show the forecasting ability of a recent finding where the behavior of integration quantifiers was analyzed and investigated with a mathematical model of statistical physics origins (a generalization of the monomer dimer model). After providing a detailed literature review of the model, we show that not only such a model is able to identify the social mechanism that drives a particular integration process, but it also provides correct forecast. The research reported here proves that the proposed model of integration and its forecast framework are simple and effective tools to reduce uncertainties about how integration phenomena emerge and how they are likely to develop in response to increased migration levels in the future.
Resumo:
The Curie-Weiss model is defined by ah Hamiltonian according to spins interact. For some particular values of the parameters, the sum of the spins normalized with square-root normalization converges or not toward Gaussian distribution. In the thesis we investigate some correlations between the behaviour of the sum and the central limit for interacting random variables.
Resumo:
Monomer-dimer models are amongst the models in statistical mechanics which found application in many areas of science, ranging from biology to social sciences. This model describes a many-body system in which monoatomic and diatomic particles subject to hard-core interactions get deposited on a graph. In our work we provide an extension of this model to higher-order particles. The aim of our work is threefold: first we study the thermodynamic properties of the newly introduced model. We solve analytically some regular cases and find that, differently from the original, our extension admits phase transitions. Then we tackle the inverse problem, both from an analytical and numerical perspective. Finally we propose an application to aggregation phenomena in virtual messaging services.
Resumo:
We have studied the structure and stability of (H3O+)(H2O)8 clusters using a combination of molecular dynamics sampling and high-level ab initio calculations. 20 distinct oxygen frameworks are found within 2 kcal/mol of the electronic or standard Gibbs free energy minimum. The impact of quantum zero-point vibrational corrections on the relative stability of these isomers is quite significant. The box-like isomers are favored in terms of electronic energy, but with the inclusion of zero-point vibrational corrections and entropic effects tree-like isomers are favored at higher temperatures. Under conditions from 0 to 298.15 K, the global minimum is predicted to be a tree-like structure with one dangling singly coordinated water molecule. Above 298.15 K, higher entropy tree-like isomers with two or more singly coordinated water molecules are favored. These assignments are generally consistent with experimental IR spectra of (H3O+)(H2O)8 obtained at 150 K.