954 resultados para Maxwells Equations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design equations are presented for calculating the resonance frequencies for a compact dual frequency arrow-shaped microstrip antenna. This provides a fast and simple way to predict the resonant frequencies of the antenna. The antenna is also analyzed using the IE3D simulation package. The theoretical predictions are found to be very close to the IE3D results and thus establish the validity of the design formulae

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis the author has presented qualitative studies of certain Kdv equations with variable coefficients. The well-known KdV equation is a model for waves propagating on the surface of shallow water of constant depth. This model is considered as fitting into waves reaching the shore. Renewed attempts have led to the derivation of KdV type equations in which the coefficients are not constants. Johnson's equation is one such equation. The researcher has used this model to study the interaction of waves. It has been found that three-wave interaction is possible, there is transfer of energy between the waves and the energy is not conserved during interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of the soliton is considered to be one of the most significant events of the twentieth century. The term soliton refers to special kinds of waves that can propagate undistorted over long distances and remain unaffected even after collision with each other. Solitons have been studied extensively in many fields of physics. In the context of optical fibers, solitons are not only of fundamental interest but also have potential applications in the field of optical fiber communications. This thesis is devoted to the theoretical study of soliton pulse propagation through single mode optical fibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Usually typical dynamical systems are non integrable. But few systems of practical interest are integrable. The soliton concept is a sophisticated mathematical construct based on the integrability of a class ol' nonlinear differential equations. An important feature in the clevelopment. of the theory of solitons and of complete integrability has been the interplay between mathematics and physics. Every integrable system has a lo11g list of special properties that hold for integrable equations and only for them. Actually there is no specific definition for integrability that is suitable for all cases. .There exist several integrable partial clillerential equations( pdes) which can be derived using physically meaningful asymptotic teclmiques from a very large class of pdes. It has been established that many 110nlinear wa.ve equations have solutions of the soliton type and the theory of solitons has found applications in many areas of science. Among these, well-known equations are Korteweg de-Vries(KdV), modified KclV, Nonlinear Schr6dinger(NLS), sine Gordon(SG) etc..These are completely integrable systems. Since a small change in the governing nonlinear prle may cause the destruction of the integrability of the system, it is interesting to study the effect of small perturbations in these equations. This is the motivation of the present work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis relates to the investigations carried out on Rectangular Dielectric Resonator Antenna configurations suitable for Mobile Communication applications. The main objectives of the research are to: - numerically compute the radiation characteristics of a Rectangular DRA - identify the resonant modes - validate the numerically predicted data through simulation and experiment 0 ascertain the influence of the geometrical and material parameters upon the radiation behaviour of the antenna ° develop compact Rectangular DRA configurations suitable for Mobile Communication applications Although approximate methods exist to compute the resonant frequency of Rectangular DRA’s, no rigorous analysis techniques have been developed so far to evaluate the resonant modes. In this thesis a 3D-FDTD (Finite Difference Time Domain) Modeller is developed using MATLAB® for the numerical computation of the radiation characteristics of the Rectangular DRA. The F DTD method is a powerful yet simple algorithm that involves the discretimtion and solution of the derivative form of Maxwell’s curl equations in the time domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial boundary conditions are presented to approximate solutions to Stokes- and Navier-Stokes problems in domains that are layer-like at infinity. Based on results about existence and asymptotics of the solutions v^infinity, p^infinity to the problems in the unbounded domain Omega the error v^infinity - v^R, p^infinity - p^R is estimated in H^1(Omega_R) and L^2(Omega_R), respectively. Here v^R, p^R are the approximating solutions on the truncated domain Omega_R, the parameter R controls the exhausting of Omega. The artificial boundary conditions involve the Steklov-Poincare operator on a circle together with its inverse and thus turn out to be a combination of local and nonlocal boundary operators. Depending on the asymptotic decay of the data of the problems, in the linear case the error vanishes of order O(R^{-N}), where N can be arbitrarily large.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article surveys the classical orthogonal polynomial systems of the Hahn class, which are solutions of second-order differential, difference or q-difference equations. Orthogonal families satisfy three-term recurrence equations. Example applications of an algorithm to determine whether a three-term recurrence equation has solutions in the Hahn class - implemented in the computer algebra system Maple - are given. Modifications of these families, in particular associated orthogonal systems, satisfy fourth-order operator equations. A factorization of these equations leads to a solution basis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The motion of a viscous incompressible fluid flow in bounded domains with a smooth boundary can be described by the nonlinear Navier-Stokes equations. This description corresponds to the so-called Eulerian approach. We develop a new approximation method for the Navier-Stokes equations in both the stationary and the non-stationary case by a suitable coupling of the Eulerian and the Lagrangian representation of the flow, where the latter is defined by the trajectories of the particles of the fluid. The method leads to a sequence of uniquely determined approximate solutions with a high degree of regularity containing a convergent subsequence with limit function v such that v is a weak solution of the Navier-Stokes equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method of approximate approximations is based on generating functions representing an approximate partition of the unity, only. In the present paper this method is used for the numerical solution of the Poisson equation and the Stokes system in R^n (n = 2, 3). The corresponding approximate volume potentials will be computed explicitly in these cases, containing a one-dimensional integral, only. Numerical simulations show the efficiency of the method and confirm the expected convergence of essentially second order, depending on the smoothness of the data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a similar manner as in some previous papers, where explicit algorithms for finding the differential equations satisfied by holonomic functions were given, in this paper we deal with the space of the q-holonomic functions which are the solutions of linear q-differential equations with polynomial coefficients. The sum, product and the composition with power functions of q-holonomic functions are also q-holonomic and the resulting q-differential equations can be computed algorithmically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The object of research presented here is Vessiot's theory of partial differential equations: for a given differential equation one constructs a distribution both tangential to the differential equation and contained within the contact distribution of the jet bundle. Then within it, one seeks n-dimensional subdistributions which are transversal to the base manifold, the integral distributions. These consist of integral elements, and these again shall be adapted so that they make a subdistribution which closes under the Lie-bracket. This then is called a flat Vessiot connection. Solutions to the differential equation may be regarded as integral manifolds of these distributions. In the first part of the thesis, I give a survey of the present state of the formal theory of partial differential equations: one regards differential equations as fibred submanifolds in a suitable jet bundle and considers formal integrability and the stronger notion of involutivity of differential equations for analyzing their solvability. An arbitrary system may (locally) be represented in reduced Cartan normal form. This leads to a natural description of its geometric symbol. The Vessiot distribution now can be split into the direct sum of the symbol and a horizontal complement (which is not unique). The n-dimensional subdistributions which close under the Lie bracket and are transversal to the base manifold are the sought tangential approximations for the solutions of the differential equation. It is now possible to show their existence by analyzing the structure equations. Vessiot's theory is now based on a rigorous foundation. Furthermore, the relation between Vessiot's approach and the crucial notions of the formal theory (like formal integrability and involutivity of differential equations) is clarified. The possible obstructions to involution of a differential equation are deduced explicitly. In the second part of the thesis it is shown that Vessiot's approach for the construction of the wanted distributions step by step succeeds if, and only if, the given system is involutive. Firstly, an existence theorem for integral distributions is proven. Then an existence theorem for flat Vessiot connections is shown. The differential-geometric structure of the basic systems is analyzed and simplified, as compared to those of other approaches, in particular the structure equations which are considered for the proofs of the existence theorems: here, they are a set of linear equations and an involutive system of differential equations. The definition of integral elements given here links Vessiot theory and the dual Cartan-Kähler theory of exterior systems. The analysis of the structure equations not only yields theoretical insight but also produces an algorithm which can be used to derive the coefficients of the vector fields, which span the integral distributions, explicitly. Therefore implementing the algorithm in the computer algebra system MuPAD now is possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-stationary nonlinear Navier-Stokes equations describe the motion of a viscous incompressible fluid flow for 0equations are well-posed or not. Therefore we use a particle method to develop a system of approximate equations. We show that this system can be solved uniquely and globally in time and that its solution has a high degree of spatial regularity. Moreover we prove that the system of approximate solutions has an accumulation point satisfying the Navier-Stokes equations in a weak sense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper we use a time delay epsilon > 0 for an energy conserving approximation of the nonlinear term of the non-stationary Navier-Stokes equations. We prove that the corresponding initial value problem (N_epsilon)in smoothly bounded domains G \subseteq R^3 is well-posed. Passing to the limit epsilon \rightarrow 0 we show that the sequence of stabilized solutions has an accumulation point such that it solves the Navier-Stokes problem (N_0) in a weak sense (Hopf).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The finite element method (FEM) is now developed to solve two-dimensional Hartree-Fock (HF) equations for atoms and diatomic molecules. The method and its implementation is described and results are presented for the atoms Be, Ne and Ar as well as the diatomic molecules LiH, BH, N_2 and CO as examples. Total energies and eigenvalues calculated with the FEM on the HF-level are compared with results obtained with the numerical standard methods used for the solution of the one dimensional HF equations for atoms and for diatomic molecules with the traditional LCAO quantum chemical methods and the newly developed finite difference method on the HF-level. In general the accuracy increases from the LCAO - to the finite difference - to the finite element method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the finite-element method in its application to solving quantum-mechanical problems for diatomic molecules. Results for Hartree-Fock calculations of H_2 and Hartree-Fock-Slater calculations for molecules like N_2 and CO are presented. The accuracy achieved with fewer than 5000 grid points for the total energies of these systems is 10^-8 a.u., which is about two orders of magnitude better than the accuracy of any other available method.