967 resultados para Maxwell, Equações de


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Onset and evolution of the Rayleigh-Benard (R-B) convection are investigated using the Information Preservation (IP) method. The information velocity and temperature are updated using the Octant Flux Splitting (OFS) model developed by Masters & Ye based on the Maxwell transport equation suggested by Sun & Boyd. Statistical noise inherent in particle approaches such as the direct simulation Monte Carlo (DSMC) method is effectively reduced by the IP method, and therefore the evolutions from an initial quiescent fluid to a final steady state are shown clearly. An interesting phenomenon is observed: when the Rayleigh number (Ra) exceeds its critical value, there exists an obvious incubation stage. During the incubation stage, the vortex structure clearly appears and evolves, whereas the Nusselt number (Nu) of the lower plate is close to unity. After the incubation stage, the vortex velocity and Nu rapidly increase, and the flow field quickly reaches a steady, convective state. A relation of Nu to Ra given by IP agrees with those given by DSMC, the classical theory and experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

der="0" alt="" hspace="8" width="100" height="100" align="left" />通常的气体动力学方法,当气体分子的平均自由程与流场特征长度相比不可忽略时,不再适用,要采用稀薄气体动力学的方法。这适用于航天飞行器在高空飞行时受的力和热,也适用于微机电系统和真空系统等离子体材料加工等21世纪技术前沿领域。本书系统、简明地阐述稀薄气体动力学方法,给出方法的基础并着重介绍直接模拟Monte Carlo(DSMC)方法以及与低速稀薄气体流动相关的前沿课题。全书共分7章。前两章是作为学科的基础引入的,第1章以空气为对象对于分子能态结构、能态分布以极小篇幅作了简要概括的叙述,以作为了解稀薄气流非平衡现象物理基础的初步。第2章对包括双体碰撞、Boltzmann方程以及气体的平衡态等分子动理论的基础做了必要的讨论,其中包括了对唯像论分子相互作用模型、变径硬球(VHS)、变径软球(VSS)和概括化硬球(GHS)等模型的介绍。第3章讨论了各种分子和表面的相互作用模型,包括反映细致平衡的互易原理和基于此原理的CLL模型的阐述。第4章讨论自由分子流。第5章讨论应用于滑流领域的各连续介质方程及滑流边界条件,一些简单解以及热泳问题。第6章则较全面、概括地介绍了求解过程领域中的各种解析和数值方法。第7章介绍了直接模拟Monte Carlo(DSMC)方法,讨论了非平衡流动及低速稀薄流动等前沿课题,包括处理内能松弛、化学反应的方法、用于复杂流场通用软件的方法、低速稀薄流动的信息保存(IP)方法等。  本书适合高等学校力学一航空航天专业高年级学生、研究生及从事气动力学和航天研究的科研人员参考阅读。

编辑推荐

通常的气体动力学方法,当气体分子的平均自由程与流场特征长度相比不可忽略时,不再适用,要采用稀薄气体动力学的方法。这适用于航天飞行器在高空飞行时受的力和热,也适用于微机电系统和真空系统等离子体材料加工等21世纪技术前沿领域。本书系统、简明地阐述稀薄气体动力学方法,给出方法的基础并着重介绍直接模拟Monte Carlo(DSMC)方法以及与低速稀薄气体流动相关的前沿课题。

目录

符号表
绪论
第1节 稀薄气体动力学的提出
第2节 气体的分子模型
第3节 分子平均自由程
第4节 流动的领域划分
第5节 非平衡现象与稀薄气体动力学
第6节 相似准则
第1章 分子结构与能态
第1节 双原子分子
第2节 分子的能态分布
第3节 分子的内能、内自由度和内能分布函数
第2章 分子动理论基础
第1节 速度分布函数
第2节 宏观量的表达
第3节 分子的双体碰撞模型
第4节 碰撞截面与分子模型
第5节 Boltzmann方程
第6节 碰撞积分与气体分子的总碰撞数
第7节 碰撞积分的计算
第8节 Maxwell输运方程——矩方程
第9节 Maxwell分布
第10节 气体的平衡态
第11节 8速度气体模型
第12节 混合气体
第3章 分子表面相互作用
第1节 引言
第2节 镜面反射与漫反射,适应系数
第3节 互易性原理
第4节 CLL分子表面相互作用模型
第4章 自由分子流
第1节 气体中的分子数目通量和动量通量
第2节 作用于物体的气动力
第3节 表面元素的热传导
第4节 自由分子流出与热流逸
第5节 Couette流动与平板间的传热问题
第6节 无碰撞Boltzmann方程的通解,非定常流动
第5章 连续介质模型
第1节 引言
第2节 基本方程
第3节 滑流边界条件
第4节 一些简单问题的求解
第5节 热蠕动与热泳
第6章 过渡领域
第1节 概述
第2节 线化的BoltzmanN方程
第3节 矩方法
第4节 模型方程
第5节 有限差分法
第6节 间断纵坐标方法
第7节 积分方法
第8节 直接模拟方法
第7章 直接模拟Monte方法
第1节 引言
第2节 碰撞的取样
第3节 DSMC方法求解问题实例
第4节 内能的激发与松弛
第5节 化学反应的模拟
第6节 复杂流场的计算,位置元方法
第7节 微尺度低速气体流动,信息保存法
附录I 气体的性质和分子性质
附录II 分布函数求矩遇到的积分
附录III 具有给定分布的随机数的取样
附录IV Couette问题程序
参考文献
主题词索引

Relevância:

10.00% 10.00%

Publicador:

Resumo:

针对激光聚焦爆炸的电磁-热力耦合效应,在宏观尺度上,把描述激光电磁波散射和传播的Maxwell方程和高温高压气动流场的Euler方程结合起米,利用热力学状态方程(EOS)和电离平衡方程(Saha方程)并通过理论建模和数值仿真,研究和揭示激光聚焦爆炸效应及激光支持吸收波(LSC/LSD)的产生和演化、以及相关的反冲压力和动量耦合等相互作用机制.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various families of exact solutions to the Einstein and Einstein-Maxwell field equations of General Relativity are treated for situations of sufficient symmetry that only two independent variables arise. The mathematical problem then reduces to consideration of sets of two coupled nonlinear differential equations.

The physical situations in which such equations arise include: a) the external gravitational field of an axisymmetric, uncharged steadily rotating body, b) cylindrical gravitational waves with two degrees of freedom, c) colliding plane gravitational waves, d) the external gravitational and electromagnetic fields of a static, charged axisymmetric body, and e) colliding plane electromagnetic and gravitational waves. Through the introduction of suitable potentials and coordinate transformations, a formalism is presented which treats all these problems simultaneously. These transformations and potentials may be used to generate new solutions to the Einstein-Maxwell equations from solutions to the vacuum Einstein equations, and vice-versa.

The calculus of differential forms is used as a tool for generation of similarity solutions and generalized similarity solutions. It is further used to find the invariance group of the equations; this in turn leads to various finite transformations that give new, physically distinct solutions from old. Some of the above results are then generalized to the case of three independent variables.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Part I, a method for finding solutions of certain diffusive dispersive nonlinear evolution equations is introduced. The method consists of a straightforward iteration procedure, applied to the equation as it stands (in most cases), which can be carried out to all terms, followed by a summation of the resulting infinite series, sometimes directly and other times in terms of traces of inverses of operators in an appropriate space.

We first illustrate our method with Burgers' and Thomas' equations, and show how it quickly leads to the Cole-Hopft transformation, which is known to linearize these equations.

We also apply this method to the Korteweg and de Vries, nonlinear (cubic) Schrödinger, Sine-Gordon, modified KdV and Boussinesq equations. In all these cases the multisoliton solutions are easily obtained and new expressions for some of them follow. More generally we show that the Marcenko integral equations, together with the inverse problem that originates them, follow naturally from our expressions.

Only solutions that are small in some sense (i.e., they tend to zero as the independent variable goes to ∞) are covered by our methods. However, by the study of the effect of writing the initial iterate u_1 = u_(1)(x,t) as a sum u_1 = ^∼/u_1 + ^≈/u_1 when we know the solution which results if u_1 = ^∼/u_1, we are led to expressions that describe the interaction of two arbitrary solutions, only one of which is small. This should not be confused with Backlund transformations and is more in the direction of performing the inverse scattering over an arbitrary “base” solution. Thus we are able to write expressions for the interaction of a cnoidal wave with a multisoliton in the case of the KdV equation; these expressions are somewhat different from the ones obtained by Wahlquist (1976). Similarly, we find multi-dark-pulse solutions and solutions describing the interaction of envelope-solitons with a uniform wave train in the case of the Schrodinger equation.

Other equations tractable by our method are presented. These include the following equations: Self-induced transparency, reduced Maxwell-Bloch, and a two-dimensional nonlinear Schrodinger. Higher order and matrix-valued equations with nonscalar dispersion functions are also presented.

In Part II, the second Painleve transcendent is treated in conjunction with the similarity solutions of the Korteweg-de Vries equat ion and the modified Korteweg-de Vries equation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study is made of solutions of the macroscopic Maxwell equations in nonlinear media. Both nonlinear and dispersive terms are responsible for effects that are not taken into account in the geometrical optics approximation. The nonlinear terms can, depending on the nature of the nonlinearity, cause plane waves to focus when the amplitude varies across the wavefront. The dispersive terms prevent the singularities that nonlinearity alone would produce. Solutions are found which de scribe periodic plane waves in fully nonlinear media. Equations describing the evolution of the amplitude, frequency and wave number are generated by means of averaged Lagrangian techniques. The equations are solved for near linear media to produce the form of focusing waves which develop a singularity at the focal point. When higher dispersion is included nonlinear and dispersive effects can balance and one finds amplitude profiles that propagate with straight rays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The propagation behaviors, which include the carrier-envelope phase, the area evolution and the solitary pulse number of few-cycle pulses in a dense two-level medium, are investigated based on full-wave Maxwell-Bloch equations by taking Lorentz local field correction (LFC) into account. Several novel features are found: the difference of the carrier-envelope phase between the cases with and without LFC can go up to pi at some location; although the area of ultrashort solitary pulses is lager than 2 pi, the area of the effective Rabi frequency, which equals to that the Rabi frequency pluses the product of the strength of the near dipole-dipole (NDD) interaction and the polarization, is consistent with the standard area theorem and keeps 2 pi; the large area pulse penetrating into the medium produces several solitary pulses as usual, but the number of solitary pulses changes at certain condition. (C) 2005 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with a theoretical analysis of the reflection and refraction of light at the interface of a bicrystal by use of Maxwell's equations. For a general case, the formulas of Snell's Law and the four Fresnel coefficients for the reflection and refraction of extraordinary light at the interface of a uniaxial bicrystal are derived for the first time, as well as the Brewster angle value. The condition for total reflection is presented and the electromagnetic fields distributions at both sides of a bicrystal are presented when total reflection occurs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By solving numerically the full Maxwell-Bloch equations without the slowly varying envelope approximation and the rotating-wave approximation, we investigate the effects of Lorentz local field correction (LFC) on the propagation properties of few-cycle laser pulse in a dense A-type three-level atomic medium. We find that: when the area of the input pulse is larger, split of pulse occurs and the number of the sub-pulses with LFC is larger than that without LFC; at the same distance, the time interval between the first sub-pulse and the second sub-pulse in the case without LFC is longer than that with LFC, the time of pulse appearing in the case without LFC is later than that in the case with LFC, and the two phenomena are more obvious with propagation distance increasing; time evolution rules of the populations of levels vertical bar 1 >, vertical bar 2 > and vertical bar 3 > in the two cases with and without LFC are much different. When the area of the input pulse is smaller, effects of LFC on time evolutions of the pulse and populations are remarkably smaller than those in the case of larger area pulse. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spatiotemporal evolutions of ultrashort pulses in two dimensions are investigated numerically by solving the coupled Maxwell-Bloch equations without invoking the slowly varying envelope approximation and rotating-wave approximation. For an on-axis 2n pi sech pulse, local delay makes the temporal split 2 pi sech pulses crescent-shaped in the transverse distribution. Due to the transverse effect, the temporal split 2 pi sech pulses become unstable and experience reshaping during the propagation process. Then, interference occurs between the successive crescent-shaped pulses and multiple self-focusing can form.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the effect of the electric field maximum on the Rabi flopping and the generated higher frequency spectra properties by solving Maxwell-Bloch equations without invoking any standard approximations. It is found that the maximum of the electric field will lead to carrier-wave Rabi flopping (CWRF) through reversion dynamics which will be more evident when the applied field enters the sub-one-cycle regime. Therefore, under the interaction of sub-one-cycle pulses, the Rabi flopping follows the transient electric field tightly through the oscillation and reversion dynamics, which is in contrast to the conventional envelope Rabi flopping. Complete or incomplete population inversion can be realized through the control of the carrier-envelope phase (CEP). Furthermore, the generated higher frequency spectra will be changed from distinct to continuous or irregular with the variation of the CEP. Our results demonstrate that due to the evident maximum behavior of the electric field, pulses with different CEP give rise to different CWRFs, and then different degree of interferences lead to different higher frequency spectral features.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate an ultrafast transient, ring-shaped population grating induced by an ultrashort hollow Gaussian laser bullet by solving the three-dimensional full-wave Maxwell-Bloch equations. Through adjusting the beam waist and the area of the pulse, we can control the number of lines and the period of the grating. Based on this coherent control scheme, a door to produce gratings with complex transverse structure is opened.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes the theoretical solution and experimental verification of phase conjugation via nondegenerate four-wave mixing in resonant media. The theoretical work models the resonant medium as a two-level atomic system with the lower state of the system being the ground state of the atom. Working initially with an ensemble of stationary atoms, the density matrix equations are solved by third-order perturbation theory in the presence of the four applied electro-magnetic fields which are assumed to be nearly resonant with the atomic transition. Two of the applied fields are assumed to be non-depleted counterpropagating pump waves while the third wave is an incident signal wave. The fourth wave is the phase conjugate wave which is generated by the interaction of the three previous waves with the nonlinear medium. The solution of the density matrix equations gives the local polarization of the atom. The polarization is used in Maxwell's equations as a source term to solve for the propagation and generation of the signal wave and phase conjugate wave through the nonlinear medium. Studying the dependence of the phase conjugate signal on the various parameters such as frequency, we show how an ultrahigh-Q isotropically sensitive optical filter can be constructed using the phase conjugation process.

In many cases the pump waves may saturate the resonant medium so we also present another solution to the density matrix equations which is correct to all orders in the amplitude of the pump waves since the third-order solution is correct only to first-order in each of the field amplitudes. In the saturated regime, we predict several new phenomena associated with degenerate four-wave mixing and also describe the ac Stark effect and how it modifies the frequency response of the filtering process. We also show how a narrow bandwidth optical filter with an efficiency greater than unity can be constructed.

In many atomic systems the atoms are moving at significant velocities such that the Doppler linewidth of the system is larger than the homogeneous linewidth. The latter linewidth dominates the response of the ensemble of stationary atoms. To better understand this case the density matrix equations are solved to third-order by perturbation theory for an atom of velocity v. The solution for the polarization is then integrated over the velocity distribution of the macroscopic system which is assumed to be a gaussian distribution of velocities since that is an excellent model of many real systems. Using the Doppler broadened system, we explain how a tunable optical filter can be constructed whose bandwidth is limited by the homogeneous linewidth of the atom while the tuning range of the filter extends over the entire Doppler profile.

Since it is a resonant system, sodium vapor is used as the nonlinear medium in our experiments. The relevant properties of sodium are discussed in great detail. In particular, the wavefunctions of the 3S and 3P states are analyzed and a discussion of how the 3S-3P transition models a two-level system is given.

Using sodium as the nonlinear medium we demonstrate an ultrahigh-Q optical filter using phase conjugation via nondegenerate four-wave mixing as the filtering process. The filter has a FWHM bandwidth of 41 MHz and a maximum efficiency of 4 x 10-3. However, our theoretical work and other experimental work with sodium suggest that an efficient filter with both gain and a narrower bandwidth should be quite feasible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the characteristics of Gaussian beams reflected and transmitted from a uniaxial crystal slab with an arbitrary orientation of its optical axis. The formulas of the total electric and magnetic fields inside and outside the slab are derived by use of Maxwell's equations and by matching the boundary conditions at the interfaces. Numerical simulations are presented and the field values as well as the power densities are computed. Negative refractions are demonstrated when the beam is transmitted through a uniaxial crystal slab. Beam splitting of the reflected beam is observed and is explained by the resonant transmission for plane waves. Dependences of the lateral shift on the incident angle and beam width are discussed. Negative and positive lateral shifts are observed due to the spatial anisotropic properties.