962 resultados para Mathematical modeling of water quality
Resumo:
This monthly report from the Iowa Department of Transportation is about the water quality management of Iowa's rivers, streams and lakes.
Resumo:
This monthly report from the Iowa Department of Transportation is about the water quality management of Iowa's rivers, streams and lakes.
Resumo:
This monthly report from the Iowa Department of Transportation is about the water quality management of Iowa's rivers, streams and lakes.
Resumo:
This monthly report from the Iowa Department of Transportation is about the water quality management of Iowa's rivers, streams and lakes.
Resumo:
Iowa has nearly 72,000 miles of streams. With one week of camping, miles of paddling, on-going educational opportunities, and hundreds of dedicated and hard-working Iowans, Project AWARE can make a difference – one stretch of river, one week a year, one piece of trash at a time. If it seems like a vacation to the participants…it is. They just learn and improve the river as they go.
Resumo:
Iowa has nearly 72,000 miles of streams. With one week of camping, miles of paddling, on-going educational opportunities, and hundreds of dedicated and hard-working Iowans, Project AWARE can make a difference – one stretch of river, one week a year, one piece of trash at a time. If it seems like a vacation to the participants…it is. They just learn and improve the river as they go.
Resumo:
This monthly report from the Iowa Department of Transportation is about the water quality management of Iowa's rivers, streams and lakes.
Resumo:
This monthly report from the Iowa Department of Transportation is about the water quality management of Iowa's rivers, streams and lakes.
Resumo:
This monthly report from the Iowa Department of Natural Resources is about the water quality management of Iowa's rivers, streams and lakes.
Resumo:
This monthly report from the Iowa Department of Natural Resources is about the water quality management of Iowa's rivers, streams and lakes.
Resumo:
This monthly report from the Iowa Department of Natural Resources is about the water quality management of Iowa's rivers, streams and lakes.
Resumo:
Recent years have seen a surge in mathematical modeling of the various aspects of neuron-astrocyte interactions, and the field of brain energy metabolism is no exception in that regard. Despite the advent of biophysical models in the field, the long-lasting debate on the role of lactate in brain energy metabolism is still unresolved. Quite the contrary, it has been ported to the world of differential equations. Here, we summarize the present state of this discussion from the modeler's point of view and bring some crucial points to the attention of the non-mathematically proficient reader.
Resumo:
Iowa’s surface and ground water serves as a precious resource for industries, businesses and communities and provides state citizens and visitors with invaluable cultural and recreational opportunities. While water quality is regulated by the Iowa Department of Natural Resources (IDNR), compliance assistance is available through the Iowa Department of Economic Development (IDED) Water Quality Advocacy Program.
Resumo:
A remarkable feature of the carcinogenicity of inorganic arsenic is that while human exposures to high concentrations of inorganic arsenic in drinking water are associated with increases in skin, lung, and bladder cancer, inorganic arsenic has not typically caused tumors in standard laboratory animal test protocols. Inorganic arsenic administered for periods of up to 2 yr to various strains of laboratory mice, including the Swiss CD-1, Swiss CR:NIH(S), C57Bl/6p53(+/-), and C57Bl/6p53(+/+), has not resulted in significant increases in tumor incidence. However, Ng et al. (1999) have reported a 40% tumor incidence in C57Bl/6J mice exposed to arsenic in their drinking water throughout their lifetime, with no tumors reported in controls. In order to investigate the potential role of tissue dosimetry in differential susceptibility to arsenic carcinogenicity, a physiologically based pharmacokinetic (PBPK) model for inorganic arsenic in the rat, hamster, monkey, and human (Mann et al., 1996a, 1996b) was extended to describe the kinetics in the mouse. The PBPK model was parameterized in the mouse using published data from acute exposures of B6C3F1 mice to arsenate, arsenite, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) and validated using data from acute exposures of C57Black mice. Predictions of the acute model were then compared with data from chronic exposures. There was no evidence of changes in the apparent volume of distribution or in the tissue-plasma concentration ratios between acute and chronic exposure that might support the possibility of inducible arsenite efflux. The PBPK model was also used to project tissue dosimetry in the C57Bl/6J study, in comparison with tissue levels in studies having shorter duration but higher arsenic treatment concentrations. The model evaluation indicates that pharmacokinetic factors do not provide an explanation for the difference in outcomes across the various mouse bioassays. Other possible explanations may relate to strain-specific differences, or to the different durations of dosing in each of the mouse studies, given the evidence that inorganic arsenic is likely to be active in the later stages of the carcinogenic process. [Authors]
Resumo:
Selostus: Maatalous, fosfori ja veden laatu: alkuperä, kulkeutuminen ja vesistökuormituksen hallinta