890 resultados para Marine pelagic community
Resumo:
Senior thesis written for Oceanography 445
Resumo:
In this study dynamics of infaunal benthic community of the continental shelf of north-eastern Arabian sea. The benthic (under water sea) organisms play an important role in the marine food chain. It can be concluded that seasonal differences in the benthic community was observed in lower depths and absent in deeper depths. Increased richness and diversity during pre-monsoon may be related to the increased primary production which inturn influenced by the increased nutrient input due to winter convection. No single ecological factor could be considered as a master factor. In general the area supports moderately high benthic production and diversified community.
Resumo:
This thesis entitled spatial and temporal variarion of microbial community structure in surficial sediments of cochin estuary.In the estuarine and coastal systems, organic matter (OM) is derived not only from autochthonous primary production, but also from allochthonous (terrestrial) organic matter (OM) delivered by river discharge and runoff. A significant portion of the OM sinks through the water column and is ultimately stored in carbon pool in the sediments.Analysis of spatial and temporal variation in benthic microbial community of a tropical estuary was conducted for the first time using non selective measures that affirms that PLFA approach is a sensitive and reliable method in determining microbial community structures of surficial sediments of estuary.The close relationship between the concentrations of the microbial fatty acids and total biomass indicates that bacteria could account for the largest proportion of the biomass in the sediments.This is first study that has documented the changes in microbial community composition linkage to biotic and abiotic variables in benthic estuarine ecosystem. This contemporaneous community will be the backdrop for understanding the response of autochthonous community to increasing anthropogenic stress.
Resumo:
The Arabian Sea and the Bay of Bengal are both highly dynamic ecosystems, due to the seasonally reversing monsoon winds, but the processes affecting the mesozooplankton community remain poorly understood. These are important basins exhibiting enhanced biological production as a result of upwelling, winter cooling and other episodic events such as eddies and gyres. Zooplankters are primarily the prey for almost all fish larvae. Seasonal changes in the biogeochemical processes can strongly affect zooplankton density and distribution, which in turn, strongly affect the larval growth, and consequently, the pelagic fish recruitment. It is clear that plankton biomass and biogeochemical fluxes are not in steady state. Acoustic data on mesozooplankton abundance suggests that they also exist in the mesopelagic zone. Earlier studies were confined only to the upper 200 m and hence the structure of mesozooplankton community in the deeper layers was not well known. Copepods are the dominant mesoplankton group, and therefore the majority of the studies were focused on them. The planktonic ostracods are the second major crustacean group and at times, their swarms can outnumber all other planktonic groups. The understanding of the community structure of the ostracods is essential to establish their role in the marine food web. Mesozooplankton is responsible for the vertical flux of organic matter produced by phytoplankton and is assumed to be equivalent to new production (Eppley & Peterson, 1979). Since the fate of newly produced organic matter depends upon their consumers, the zooplankton biomass must be estimated in size fractions or taxonomic components to understand the vertical flux of organic carbon. It is thus important to update our knowledge on different groups of zooplankton on the basis of seasonal and temporal distribution. The distribution in space and time is essential for modeling the carbon cycling that structure the marine ecosystems
Resumo:
The present study was undertaken to observe the phytoplankton (distones,dinoflageliates,and blue green algae) blooms occurring along the south west coast of India at various seasons from February 1982 to august 1984.The centers selected for collection and observation were off Quilon, off Alleppey ,off Calicut. A total number of 25 phytoplankton blooms were studied. Characterisation of phytoplankton blooms include observing the cell counts from the day of its appearance to its day of disappearance. The appearance ,duration and locality of the blooms were also noted
Resumo:
The influence of salinity on phytoplankton varies widely, because different species have different salinity preferences. Like marine and aquatic species, many phytoplankton species exhibit tolerance to certain salinity, beyond which, it can inhibit their growth. Light is the most important factor that influences phytoplankton growth. In aquatic environments (lakes, sea or estuary) the light incident on the surface is rapidly reduced exponentially with depth (Krik, 1994). In estuaries, the major factor influencing the light availability is the suspended particulate matter, which attenuates and scatters the light. The light changes with time of the day and the season, affecting the amount of light penetrating the water column. Similarly, biological factor like copepod grazing is a major factor influencing the standing crop of phytoplankton. The copepod can actively graze up to 75% of the phytoplankton biomass in a tropical estuary (Tan et. al., 2004). It is in the context that the present study investigates the salinity, light (physical factors) and copepod grazing (biological factor) phytoplankton as the factors controlling phytoplankton growth and distribution
Resumo:
The addition of commercial nitrifying bacterial products has resulted in significant improvement of nitrification efficiency in recirculating aquaculture systems (RAS). We developed two nitrifying bacterial consortia (NBC) from marine and brackish water as start up cultures for immobilizing commercialized nitrifying bioreactors for RAS. In the present study, the community compositions of the NBC were analyzed by universal 16S rRNA gene and bacterial amoA gene sequencing and fluorescence in situ hybridization (FISH). This study demonstrated that both the consortia involved autotrophic nitrifiers, denitrifiers as well as heterotrophs. Abundant taxa of the brackish water heterotrophic bacterial isolates were Paenibacillus and Beijerinckia spp. whereas in the marine consortia they were Flavobacterium, Cytophaga and Gramella species. The bacterial amoA clones were clustered together with high similarity to Nitrosomonas sp. and uncultured beta Proteobacteria. FISH analysis detected ammonia oxidizers belonging to b subclass of proteobacteria and Nitrosospira sp. in both the consortia, and Nitrosococcus mobilis lineage only in the brackish water consortium and the halophilic Nitrosomonas sp. only in the marine consortium. However, nitrite oxidizers, Nitrobacter sp. and phylum Nitrospira were detected in both the consortia. The metabolites from nitrifiers might have been used by heterotrophs as carbon and energy sources making the consortia a stable biofilm.
Resumo:
Present study consists the species diversity, abundance and community structure of ichthyofauna in the seagrass meadow of Minicoy Atoll, Lakshadweep Islands. Two hundred and three species of fishes were recorded during the study, from four stations in the Atoll. They belonged to 2 classes, 11orders, 43 families and 93 genera. Six species belonged to the class Chondreichthyes and 197 species to Osteichthyes. Family Pomacentridae showed maximum abundance of species (22%). Station I, having close proximity to the coral reefs, observed the maximum number of families (37) and species (129) and that with minimum number was in station II (23 families and 52 species). Bray-Curtis similarity plot showed a similarity range of 22 to 52%, seasonally. Station I showed highest Shannon-Wiener diversity index (H’log2) (4.22) during August and the lowest (2.91) during June. Stations I and III showed comparatively higher abundance and diversity of fishes. Variability in seagrass habitat structure and the interaction with coral reefs influenced the species composition and diversity of fishes in Minicoy Atoll. The findings of the present investigation can be used as baseline information for the fishery resource management of the region
Resumo:
The overall attempt of the study was aimed to understand the microphytoplankton community composition and its variations along a highly complex and dynamic marine ecosystem, the northern Arabian Sea. The data generated provides a first of its kind knowledge on the major primary producers of the region. There appears significant response among the microphytoplankton community structure towards the variations in the hydrographic conditions during the winter monsoon period. Interannually, variations were observed within the microphytoplankton community associated with the variability in temperature patterns and the intensity of convective mixing. Changing bloom pattern and dominating species among the phytoplankton community open new frontiers and vistas towards more intense study on the biological responses towards physical processes. The production of large amount of organic matter as a result of intense blooming of Noctiluca as well as diatoms aggregations augment the particulate organic substances in these ecosystem. This definitely influences the carbon dynamics of the northern Arabian Sea. Detailed investigations based on time series as well as trophodynamic studies are necessary to elucidate the carbon flux and associated impacts of winter-spring blooms in NEAS. Arabian sea is considered as one among the hotspot for carbon dynamics and the pioneering records on the major primary producers fuels carbon based export production studies and provides a platform for future research. Moreover upcoming researches based on satellite based remote sensing on productivity patterns utilizes these insitu observations and taxonomic data sets of phytoplankton for validation of bloom specific algorithm development and its implementation. Furthermore Saurashtra coast is considered as a major fishing zone of Indian EEZ. The studies on the phytoplankton in these regions provide valuable raw data for fishery prediction models and identifying fishing zones. With the Summary and Conclusion 177 baseline data obtained further trophodynamic studies can be initiated in the complex productive North Eastern Arabian Seas (NEAS) ecosystem that is still remaining unexplored.
Resumo:
Adaptive radiations often follow the evolution of key traits, such as the origin of the amniotic egg and the subsequent radiation of terrestrial vertebrates. The mechanism by which a species determines the sex of its offspring has been linked to critical ecological and life-history traits(1-3) but not to major adaptive radiations, in part because sex-determining mechanisms do not fossilize. Here we establish a previously unknown coevolutionary relationship in 94 amniote species between sex-determining mechanism and whether a species bears live young or lays eggs. We use that relationship to predict the sex-determining mechanism in three independent lineages of extinct Mesozoic marine reptiles (mosasaurs, sauropterygians and ichthyosaurs), each of which is known from fossils to have evolved live birth(4-7). Our results indicate that each lineage evolved genotypic sex determination before acquiring live birth. This enabled their pelagic radiations, where the relatively stable temperatures of the open ocean constrain temperature-dependent sex determination in amniote species. Freed from the need to move and nest on land(4,5,8), extreme physical adaptations to a pelagic lifestyle evolved in each group, such as the fluked tails, dorsal fins and wing-shaped limbs of ichthyosaurs. With the inclusion of ichthyosaurs, mosasaurs and sauropterygians, genotypic sex determination is present in all known fully pelagic amniote groups (sea snakes, sirenians and cetaceans), suggesting that this mode of sex determination and the subsequent evolution of live birth are key traits required for marine adaptive radiations in amniote lineages.
Resumo:
We have studied growth and estimated recruitment of massive coral colonies at three sites, Kaledupa, Hoga and Sampela, separated by about 1.5 km in the Wakatobi Marine National Park, S.E. Sulawesi, Indonesia. There was significantly higher species richness (P<0.05), coral cover (P<0.05) and rugosity (P<0.01) at Kaledupa than at Sampela. A model for coral reef growth has been developed based on a rational polynomial function, where dx/dt is an index of coral growth with time; W is the variable (for example, coral weight, coral length or coral area), up to the power of n in the numerator and m in the denominator; a1……an and b1…bm are constants. The values for n and m represent the degree of the polynomial, and can relate to the morphology of the coral. The model was used to simulate typical coral growth curves, and tested using published data obtained by weighing coral colonies underwater in reefs on the south-west coast of Curaçao [‘Neth. J. Sea Res. 10 (1976) 285’]. The model proved an accurate fit to the data, and parameters were obtained for a number of coral species. Surface area data was obtained on over 1200 massive corals at three different sites in the Wakatobi Marine National Park, S.E. Sulawesi, Indonesia. The year of an individual's recruitment was calculated from knowledge of the growth rate modified by application of the rational polynomial model. The estimated pattern of recruitment was variable, with little numbers of massive corals settling and growing before 1950 at the heavily used site, Sampela, relative to the reef site with little or no human use, Kaledupa, and the intermediate site, Hoga. There was a significantly greater sedimentation rate at Sampela than at either Kaledupa (P<0.0001) or Hoga (P<0.0005). The relative mean abundance of fish families present at the reef crests at the three sites, determined using digital video photography, did not correlate with sedimentation rates, underwater visibility or lack of large non-branching coral colonies. Radial growth rates of three genera of non-branching corals were significantly lower at Sampela than at Kaledupa or at Hoga, and there was a high correlation (r=0.89) between radial growth rates and underwater visibility. Porites spp. was the most abundant coral over all the sites and at all depths followed by Favites (P<0.04) and Favia spp. (P<0.03). Colony ages of Porites corals were significantly lower at the 5 m reef flat on the Sampela reef than at the same depth on both other reefs (P<0.005). At Sampela, only 2.8% of corals on the 5 m reef crest are of a size to have survived from before 1950. The Scleractinian coral community of Sampela is severely impacted by depositing sediments which can lead to the suffocation of corals, whilst also decreasing light penetration resulting in decreased growth and calcification rates. The net loss of material from Sampela, if not checked, could result in the loss of this protective barrier which would be to the detriment of the sublittoral sand flats and hence the Sampela village.
Resumo:
Microbial community composition was examined in two soil types, Anthrosols and adjacent soils, sampled from three locations in the Brazilian Amazon. The Anthrosols, also known as Amazonian dark earths, are highly fertile soils that are a legacy of pre-Columbian settlement. Both Anthrosols and adjacent soils are derived from the same parent material and subject to the same environmental conditions, including rainfall and temperature; however, the Anthrosols contain high levels of charcoal-like black carbon from which they derive their dark color. The Anthrosols typically have higher cation exchange capacity, higher pH, and higher phosphorus and calcium contents. We used culture media prepared from soil extracts to isolate bacteria unique to the two soil types and then sequenced their 16S rRNA genes to determine their phylogenetic placement. Higher numbers of culturable bacteria, by over two orders of magnitude at the deepest sampling depths, were counted in the Anthrosols. Sequences of bacteria isolated on soil extract media yielded five possible new bacterial families. Also, a higher number of families in the bacteria were represented by isolates from the deeper soil depths in the Anthrosols. Higher bacterial populations and a greater diversity of isolates were found in all of the Anthrosols, to a depth of up to 1 m, compared to adjacent soils located within 50-500 m of their associated Anthrosols. Compared to standard culture media, soil extract media revealed diverse soil microbial populations adapted to the unique biochemistry and physiological ecology of these Anthrosols.
Resumo:
Dibromotyrosine-derived metabolites are of common occurrence within marine sponges belonging to the order Verongida. However, previous chemical analysis of crude extracts obtained from samples of the verongid sponge Aplysina fulva collected in Brazil did not provide any dibromotyrosine-derived compounds. In this investigation, five samples of A. fulva from five different locations along the Brazilian coastline and one sample from a temperate reef in the South Atlantic Bight (SAB) (Georgia, USA) were investigated for the presence of bromotyrosine-derived compounds. All six samples collected yielded dibromotyrosine-derived compounds, including a new derivative, named aplysinafulvin, which has been identified by. analysis of spectroscopic data. These results confirm previous assumptions that dibromotyrosine-derived metabolites can be considered as chemotaxonomic markers of verongid sponges. The isolation of aplysinafulvin provides additional support for a biogenetic pathway involving an arene oxide intermediate in the biosynthesis of Verongida metabolites. It cannot yet be established if the chemical variability observed among the six samples of A.fulva collected in Brazil and the SAB is the result of different environmental factors, distinct chemical extraction and isolation protocols, or a consequence of hidden genetic diversity within the postulated morphological plasticity of this species. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The impact of shrimp fisheries in tropical regions has become comparable to the world's most intensively exploited temperate shed ecosystems. The increase in the fishing fleet in south-eastern Brazil and the decrease in landings of profitable shrimp species have contributed to the incorporation of additional species into those fisheries. The goal of the present study is to investigate the influence of environmental factors on the abundance patterns of shrimp communities on the south-eastern coast of Brazil, over a period of two years. Monthly collections were conducted in the Ubatuba and Caraguatatuba regions using a commercial shrimp fishing boat equipped with 'double-rig' nets. Each region was divided into 7 sampling stations up to 35 m deep. The relationship between the environmental factors and the abundance patterns in the shrimp communities was assessed using a canonical correlation analysis (CCorrA). The first set of variables used during the CCorrA included environmental characteristics and the second set of variables the abundance of the studied species. A total of 374,915 individuals were collected during the present study. Xiphopenaeus kroyeri showed the highest abundance (273,127), followed by Artemesia longinaris (73,422), and Pleoticus muelleri (15,262). In the first root, depth and temperature showed the highest factor loadings (0.9 and -0.7) and canonical weights (0.6 and -0.4). These environmental factors were strongly associated with the abundance of X. kroyeri (factor loading = - 0.9 and canonical weight = - 0.9). The second root demonstrated a positive relationship between abundance of P. muelleri and depth, and an inverse association with bottom temperature. The abundance patterns of X. kroyeri and P. muelleri were strongly affected by the water mass South Atlantic Central Water (cold waters =15 degrees C), which can lead to a temperature decrease in deeper areas (> 15 m). Thus, the opposite abundance trend for depth of these species might reflect bathymetric variation in temperature, a clear example of distinct behavioural differences of species of different origins, either tropical (X. kroyeri) or subantarctic (P. muelleri). The low overall association between environmental parameters and shrimp abundance patterns indicates that each studied species might have responded idiosyncratically to environmental variation, such that a general community-level response was not apparent. However, other confounding factors such as intraspecific migration patterns might have also played a role in generating the observed patterns.