1000 resultados para Marijuana Regulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notch proteins regulate a broad spectrum of cell fate decisions and differentiation processes during fetal and postnatal development. Mammals have four Notch receptors that bind five different ligands. The function of Notch signaling during lymphopoiesis and T cell neoplasia, based on gain-of-function and conditional loss-of-function approaches for the Notch1 receptor, indicates Notch1 is essential in T cell lineage commitment. Recent studies have addressed the involvement of other Notch receptors and ligands as well as their downstream targets, demonstrating additional functions of Notch signaling in embryonic hematopoiesis, intrathymic T cell development, B cell development and peripheral T cell function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although age-dependent effects on blood pressure (BP) have been reported, they have not been systematically investigated in large-scale genome-wide association studies (GWASs). We leveraged the infrastructure of three well-established consortia (CHARGE, GBPgen, and ICBP) and a nonstandard approach (age stratification and metaregression) to conduct a genome-wide search of common variants with age-dependent effects on systolic (SBP), diastolic (DBP), mean arterial (MAP), and pulse (PP) pressure. In a two-staged design using 99,241 individuals of European ancestry, we identified 20 genome-wide significant (p ≤ 5 × 10(-8)) loci by using joint tests of the SNP main effect and SNP-age interaction. Nine of the significant loci demonstrated nominal evidence of age-dependent effects on BP by tests of the interactions alone. Index SNPs in the EHBP1L1 (DBP and MAP), CASZ1 (SBP and MAP), and GOSR2 (PP) loci exhibited the largest age interactions, with opposite directions of effect in the young versus the old. The changes in the genetic effects over time were small but nonnegligible (up to 1.58 mm Hg over 60 years). The EHBP1L1 locus was discovered through gene-age interactions only in whites but had DBP main effects replicated (p = 8.3 × 10(-4)) in 8,682 Asians from Singapore, indicating potential interethnic heterogeneity. A secondary analysis revealed 22 loci with evidence of age-specific effects (e.g., only in 20 to 29-year-olds). Age can be used to select samples with larger genetic effect sizes and more homogenous phenotypes, which may increase statistical power. Age-dependent effects identified through novel statistical approaches can provide insight into the biology and temporal regulation underlying BP associations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY OBJECTIVES: Besides their well-established role in circadian rhythms, our findings that the forebrain expression of the clock-genes Per2 and Dbp increases and decreases, respectively, in relation to time spent awake suggest they also play a role in the homeostatic aspect of sleep regulation. Here, we determined whether time of day modulates the effects of elevated sleep pressure on clock-gene expression. Time of day effects were assessed also for recognized electrophysiological (EEG delta power) and molecular (Homer1a) markers of sleep homeostasis. DESIGN: EEG and qPCR data were obtained for baseline and recovery from 6-h sleep deprivation starting at ZT0, -6, -12, or -18. SETTING: Mouse sleep laboratory. PARTICIPANTS: Male mice. INTERVENTIONS: Sleep deprivation. RESULTS: The sleep-deprivation induced changes in Per2 and Dbp expression importantly varied with time of day, such that Per2 could even decrease during sleep deprivations occurring at the decreasing phase in baseline. Dbp showed similar, albeit opposite dynamics. These unexpected results could be reliably predicted assuming that these transcripts behave according to a driven damped harmonic oscillator. As expected, the sleep-wake distribution accounted for a large degree of the changes in EEG delta power and Homer1a. Nevertheless, the sleep deprivation-induced increase in delta power varied also with time of day with higher than expected levels when recovery sleep started at dark onset. CONCLUSIONS: Per2 and delta power are widely used as exclusive state variables of the circadian and homeostatic process, respectively. Our findings demonstrate a considerable cross-talk between these two processes. As Per2 in the brain responds to both sleep loss and time of day, this molecule is well positioned to keep track of and to anticipate homeostatic sleep need. CITATION: Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P. Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. SLEEP 2013;36(3):311-323.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that glucose increases the glucose transporter (GLUT2) mRNA expression in the liver in vivo and in vitro. Here we report an analysis of the effects of glucose metabolism on GLUT2 gene expression. GLUT2 mRNA accumulation by glucose was not due to stabilization of its transcript but rather was a direct effect on gene transcription. A proximal fragment of the 5' regulatory region of the mouse GLUT2 gene linked to a reporter gene was transiently transfected into liver GLUT2-expressing cells. Glucose stimulated reporter gene expression in these cells, suggesting that glucose-responsive elements were included within the proximal region of the promoter. A dose-dependent effect of glucose on GLUT2 expression was observed over 10 mM glucose irrespective of the hexokinase isozyme (glucokinase K(m) 16 mM; hexokinase I K(m) 0.01 mM) present in the cell type used. This suggests that the correlation between extracellular glucose and GLUT2 mRNA concentrations is simply a reflection of an activation of glucose metabolism. The mediators and the mechanism responsible for this response remain to be determined. In conclusion, glucose metabolism is required for the proper induction of the GLUT2 gene in the liver and this effect is transcriptionally regulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquaporins (AQPs) are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues. Since duplication events amplified the poplar AQP family, we addressed the question of expression redundancy between gene duplicates. On these purposes, we carried a meta-analysis of all publicly available Affymetrix experiments. Our in-silico strategy controlled for previously identified biases in cross-species transcriptomics, a necessary step for any comparative transcriptomics based on multispecies design chips. Three poplar AQPs were not supported by any expression data, even in a large collection of situations (abiotic and biotic constraints, temporal oscillations and mutants). The expression of 11 AQPs was never or poorly regulated whatever the wideness of their expression domain and their expression level. Our work highlighted that PtTIP1;4 was the most responsive gene of the AQP family. A high functional divergence between gene duplicates was detected across species and in response to tested cues, except for the root-expressed PtTIP2;3/PtTIP2;4 pair exhibiting 80% convergent responses. Our meta-analysis assessed key features of aquaporin expression which had remained hidden in single experiments, such as expression wideness, response specificity and genotype and environment interactions. By consolidating expression profiles using independent experimental series, we showed that the large expansion of AQP family in poplar was accompanied with a strong divergence of gene expression, even if some cases of functional redundancy could be suspected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé: Les environnements hémodynamiques, favorisant ou protégeant contre la formation de la plaque, induisent tout deux une augmentation de la production d'anion superoxide dans les cellules endothéliales (ECs). Par ailleurs, une régulation différente de l'expression des gènes a été décrite dans les cellules exposées à ces différentes conditions. Dans le but d'investiguer le rôle de l'augmentation du stress oxydatif dans l'expression des gènes régulée par le flux, nous avons d'abord exposé les EC à un flux unidirectionnel, non pulsé. Dans ces conditions, l'état oxydatif des cellules endothéliales est augmenté de façon transitoire. L'expression du gène de l'endothéline 1 (ET-1) est aussi induite de façon transitoire par un tel flux, alors que l'expression du gène de la nitiric oxyde synthase endothéliale (NOS III) est stimulé de façon durable. Au contraire, un flux unidirectionnel pulsé, qui induit une augmentation durable de la production d'anion superoxide, augmente aussi de façon durable l'expression des gènes de ET-1 comme de NOS III. Un flux oscillatoire (favorisant la plaque), qui lui aussi ,a des effets à long terme sur la production d'anion superoxide, a uniquement augmenté l'expression de ET-1. De plus, l'utilisation d'un antioxydant, a seulement partiellement inhibé la stimulation de l'expression du gène NOS III par le flux unidirectionnel pulsé, alors qu'il a complètement abrogé la stimulation de l'expression du gène ET-1 par le flux unidirectionnel pulsé et oscillatoire. Ceci suggère que les forces mécaniques régulent l'expression des gènes dans les EC par un double mécanisme dépendant et indépendant du stress oxidatif des cellules. Par ailleurs, ces résultats supportent ultérieurement l'hypothèse que la balance entre la réponse oxidative et anti-oxidante dans les cellules endothéliales exposées à un environnement hémodynamique est une des clés de la prédisposition à un dysfonctionnement endothélial observé dans des régions exposées à des flux perturbés. Abstract: Both plaque-free and plaque-prone hemodynamic environments induce an increase in the oxidative state of endothelial cells (ECs), whereas differential gene expression regulation was described in cells exposed to these conditions. In order to investigate the role of the increased oxidative state in flow-regulation of gene expression, we first exposed EC to non-pulsed unidirectional shear stress. These conditions only slightly increases ECs oxidative state and endothelin-1 (ET-1) mRNA expression, whereas endothelial nitric oxide synthase (NOS III) mRNA level were significantly up-regulated. On the contrary, both ET-1 and NOS III gene expression were significantly induced in EC exposed to pulsed-unidirectional flow (plaque-free). Only ET-1 gene expression was up-regulated by oscillatory flow (plaque-prone). Moreover, use of an antioxidant only partially inhibited NOS III gene up-regulation by unidirectional flow, whereas it completely abrogated ET-1 gene up-regulation by unidirectional and oscillatory flows. Thus suggesting that mechanical forces regulate gene expression in ECs both via oxidative stress-dependent and -independent mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of lipase in the regulation of upper gastrointestinal function is poorly understood. We studied the effect of orlistat, a new, potent, and highly specific lipase inhibitor, on gastric emptying, cholecystokinin (CCK) release, and pancreaticobiliary secretion. Three groups of studies were performed in nine healthy volunteers, using the double-indicator technique with a triple-lumen duodenal tube, polyethylene glycol 4000 as a duodenal perfusion marker, and 99mTc-diethylenetriamine pentaacetic acid as a meal marker. Gastric emptying, pancreaticobiliary output, and postprandial plasma CCK levels were measured after ingestion of the following isocaloric 500-ml liquid meals with or without 200 mg orlistat: 1) a pure fat meal (10% Intralipid), 2) a meal containing free fatty acids, or 3) an albumin-glucose meal. All experiments were performed in a randomized, placebo-controlled, crossover design. Orlistat markedly inhibited lipase activity in all three experiments. Orlistat given with the fat meal reduced CCK release and output of lipase, trypsin, and bilirubin and accelerated the rate of gastric emptying (P < 0.05). After ingestion of the free fatty acid or albumin-glucose meal, orlistat had no significant effect on any of these parameters. We conclude that lipase plays an important, nutrient-specific role in the regulation of gastric emptying and pancreaticobiliary secretion after ingestion of fatty meals in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of PIP(2) in pancreatic beta cell function was examined here using the beta cell line MIN6B1. Blocking PIP(2) with PH-PLC-GFP or PIP5KIgamma RNAi did not impact on glucose-stimulated secretion although susceptibility to apoptosis was increased. Over-expression of PIP5KIgamma improved cell survival and inhibited secretion with accumulation of endocytic vacuoles containing F-actin, PIP(2), transferrin receptor, caveolin 1, Arf6 and the insulin granule membrane protein phogrin but not insulin. Expression of constitutively active Arf6 Q67L also resulted in vacuole formation and inhibition of secretion, which was reversed by PH-PLC-GFP co-expression. PIP(2) co-localized with gelsolin and F-actin, and gelsolin co-expression partially reversed the secretory defect of PIP5KIgamma-over-expressing cells. RhoA/ROCK inhibition increased actin depolymerization and secretion, which was prevented by over-expressing PIP5KIgamma, while blocking PIP(2) reduced constitutively active RhoA V14-induced F-actin polymerization. In conclusion, although PIP(2) plays a pro-survival role in MIN6B1 cells, excessive PIP(2) production because of PIP5KIgamma over-expression inhibits secretion because of both a defective Arf6/PIP5KIgamma-dependent endocytic recycling of secretory membrane and secretory membrane components such as phogrin and the RhoA/ROCK/PIP5KIgamma-dependent perturbation of F-actin cytoskeleton remodelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ripglut1;glut2-/- mice have no endogenous glucose transporter type 2 (glut2) gene expression but rescue glucose-regulated insulin secretion. Control of glucagon plasma levels is, however, abnormal, with fed hyperglucagonemia and insensitivity to physiological hypo- or hyperglycemia, indicating that GLUT2-dependent sensors control glucagon secretion. Here, we evaluated whether these sensors were located centrally and whether GLUT2 was expressed in glial cells or in neurons. We showed that ripglut1;glut2-/- mice failed to increase plasma glucagon levels following glucoprivation induced either by i.p. or intracerebroventricular 2-deoxy-D-glucose injections. This was accompanied by failure of 2-deoxy-D-glucose injections to activate c-Fos-like immunoreactivity in the nucleus of the tractus solitarius and the dorsal motor nucleus of the vagus. When glut2 was expressed by transgenesis in glial cells but not in neurons of ripglut1;glut2-/- mice, stimulated glucagon secretion was restored as was c-Fos-like immunoreactive labeling in the brainstem. When ripglut1;glut2-/- mice were backcrossed into the C57BL/6 genetic background, fed plasma glucagon levels were also elevated due to abnormal autonomic input to the alpha cells; glucagon secretion was, however, stimulated by hypoglycemic stimuli to levels similar to those in control mice. These studies identify the existence of central glucose sensors requiring glut2 expression in glial cells and therefore functional coupling between glial cells and neurons. These sensors may be activated at different glycemic levels depending on the genetic background.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibroblastic reticular cells (FRC) form the structural backbone of the T cell rich zones in secondary lymphoid organs (SLO), but also actively influence the adaptive immune response. They provide a guidance path for immigrating T lymphocytes and dendritic cells (DC) and are the main local source of the cytokines CCL19, CCL21, and IL-7, all of which are thought to positively regulate T cell homeostasis and T cell interactions with DC. Recently, FRC in lymph nodes (LN) were also described to negatively regulate T cell responses in two distinct ways. During homeostasis they express and present a range of peripheral tissue antigens, thereby participating in peripheral tolerance induction of self-reactive CD8(+) T cells. During acute inflammation T cells responding to foreign antigens presented on DC very quickly release pro-inflammatory cytokines such as interferon γ. These cytokines are sensed by FRC which transiently produce nitric oxide (NO) gas dampening the proliferation of neighboring T cells in a non-cognate fashion. In summary, we propose a model in which FRC engage in a bidirectional crosstalk with both DC and T cells to increase the efficiency of the T cell response. However, during an acute response, FRC limit excessive expansion and inflammatory activity of antigen-specific T cells. This negative feedback loop may help to maintain tissue integrity and function during rapid organ growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily implicated in adipocyte differentiation. The observations that PPAR alpha is a regulator of hepatic lipid metabolism and that the insulin-sensitizing thiazolidinediones are ligands for PPAR gamma suggest that cross-talk might exist between insulin signaling and PPAR activity, possibly through insulin-induced PPAR phosphorylation. Immunoprecipitation of endogenous PPAR alpha from primary rat adipocytes prelabeled with [32P]-orthophosphate and pretreated for 2 h with vanadate and okadaic acid demonstrated for the first time that PPAR alpha is a phosphoprotein in vivo. Treatment with insulin induced a time-dependent increase in PPAR phosphorylation showing a 3-fold increase after 30 min. Insulin also increased the phosphorylation of human PPAR alpha expressed in CV-1 cells. These changes in phosphorylation were paralleled by enhanced transcriptional activity of PPAR alpha and gamma. Transfection studies in CV-1 cells and HepG2 cells revealed a nearly 2-fold increase of PPAR activity in the presence of insulin. In contrast, insulin had no effect on the transcriptional activity of transfected thyroid hormone receptor in CV-1 cells, suggesting a PPAR-specific effect. Thus, insulin stimulates PPAR alpha phosphorylation and enhances the transcriptional activity of PPAR, suggesting that the transcriptional activity of this nuclear hormone receptor might be modulated by insulin-mediated phosphorylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preterm infants experience intense stress during the perinatal period because they endure painful and intense medical procedures. Repeated activation of the hypothalamic-pituitary-adrenal (HPA) axis during this period may have long-term effects on subsequent cortisol regulation. A premature delivery may also be intensely stressful for the parents, and they may develop symptoms of posttraumatic stress disorder (PTSD). Usable saliva samples were collected (4 times per day over 2 days, in the morning at awakening, at midday, in the afternoon, and in the evening before going to bed) to assess the diurnal cortisol regulation from 46 preterm infants when the infants were 12 months of corrected age (∼ 14 months after birth). Mothers reported their level of PTSD symptoms. The results showed an interaction between perinatal stress and maternal traumatic stress on the diurnal cortisol slope of preterm infants (R(2) = .32). This suggests that the HPA axis of preterm infants exposed to high perinatal stress may be more sensitive to subsequent environmental stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies demonstrated a role for hypothalamic insulin and leptin action in the regulation of glucose homeostasis. This regulation involves proopiomelanocortin (POMC) neurons because suppression of phosphatidyl inositol 3-kinase (PI3K) signaling in these neurons blunts the acute effects of insulin and leptin on POMC neuronal activity. In the current study, we investigated whether disruption of PI3K signaling in POMC neurons alters normal glucose homeostasis using mouse models designed to both increase and decrease PI3K-mediated signaling in these neurons. We found that deleting p85alpha alone induced resistance to diet-induced obesity. In contrast, deletion of the p110alpha catalytic subunit of PI3K led to increased weight gain and adipose tissue along with reduced energy expenditure. Independent of these effects, increased PI3K activity in POMC neurons improved insulin sensitivity, whereas decreased PI3K signaling resulted in impaired glucose regulation. These studies show that activity of the PI3K pathway in POMC neurons is involved in not only normal energy regulation but also glucose homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using an in vitro model of antibody-mediated demyelination, we investigated the relationship between tumor necrosis factor-alpha (TNF-alpha) and heat shock protein (HSP) induction with respect to oligodendrocyte survival. Differentiated aggregate cultures of rat telencephalon were subjected to demyelination by exposure to antibodies against myelin oligodendrocyte glycoprotein (MOG) and complement. Cultures were analyzed 48 hr after exposure. Myelin basic protein (MBP) expression was greatly decreased, but no evidence was found for either necrosis or apoptosis. TNF-alpha was significantly up-regulated. It was localized predominantly in neurons and to a lesser extent in astrocytes and oligodendrocytes, and it was not detectable in microglial cells. Among the different HSPs examined, HSP32 and alphaB-crystallin were up-regulated; they may confer protection from oxidative stress and from apoptotic death, respectively. These results suggest that TNF-alpha, often regarded as a promoter of oligodendroglial death, could alternatively mediate a protective pathway through alphaB-crystallin up-regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phototropism is a growth response allowing plants to align their photosynthetic organs toward incoming light and thereby to optimize photosynthetic activity. Formation of a lateral gradient of the phytohormone auxin is a key step to trigger asymmetric growth of the shoot leading to phototropic reorientation. To identify important regulators of auxin gradient formation, we developed an auxin flux model that enabled us to test in silico the impact of different morphological and biophysical parameters on gradient formation, including the contribution of the extracellular space (cell wall) or apoplast. Our model indicates that cell size, cell distributions, and apoplast thickness are all important factors affecting gradient formation. Among all tested variables, regulation of apoplastic pH was the most important to enable the formation of a lateral auxin gradient. To test this prediction, we interfered with the activity of plasma membrane H(+)-ATPases that are required to control apoplastic pH. Our results show that H(+)-ATPases are indeed important for the establishment of a lateral auxin gradient and phototropism. Moreover, we show that during phototropism, H(+)-ATPase activity is regulated by the phototropin photoreceptors, providing a mechanism by which light influences apoplastic pH.