896 resultados para Machine shops -- Automation
Resumo:
This project is based on Artificial Intelligence (A.I) and Digital Image processing (I.P) for automatic condition monitoring of sleepers in the railway track. Rail inspection is a very important task in railway maintenance for traffic safety issues and in preventing dangerous situations. Monitoring railway track infrastructure is an important aspect in which the periodical inspection of rail rolling plane is required.Up to the present days the inspection of the railroad is operated manually by trained personnel. A human operator walks along the railway track searching for sleeper anomalies. This monitoring way is not more acceptable for its slowness and subjectivity. Hence, it is desired to automate such intuitive human skills for the development of more robust and reliable testing methods. Images of wooden sleepers have been used as data for my project. The aim of this project is to present a vision based technique for inspecting railway sleepers (wooden planks under the railway track) by automatic interpretation of Non Destructive Test (NDT) data using A.I. techniques in determining the results of inspection.
Resumo:
The main purpose of this thesis project is to prediction of symptom severity and cause in data from test battery of the Parkinson’s disease patient, which is based on data mining. The collection of the data is from test battery on a hand in computer. We use the Chi-Square method and check which variables are important and which are not important. Then we apply different data mining techniques on our normalize data and check which technique or method gives good results.The implementation of this thesis is in WEKA. We normalize our data and then apply different methods on this data. The methods which we used are Naïve Bayes, CART and KNN. We draw the Bland Altman and Spearman’s Correlation for checking the final results and prediction of data. The Bland Altman tells how the percentage of our confident level in this data is correct and Spearman’s Correlation tells us our relationship is strong. On the basis of results and analysis we see all three methods give nearly same results. But if we see our CART (J48 Decision Tree) it gives good result of under predicted and over predicted values that’s lies between -2 to +2. The correlation between the Actual and Predicted values is 0,794in CART. Cause gives the better percentage classification result then disability because it can use two classes.
Resumo:
Wooden railway sleeper inspections in Sweden are currently performed manually by a human operator; such inspections are based on visual analysis. Machine vision based approach has been done to emulate the visual abilities of human operator to enable automation of the process. Through this process bad sleepers are identified, and a spot is marked on it with specific color (blue in the current case) on the rail so that the maintenance operators are able to identify the spot and replace the sleeper. The motive of this thesis is to help the operators to identify those sleepers which are marked by color (spots), using an “Intelligent Vehicle” which is capable of running on the track. Capturing video while running on the track and segmenting the object of interest (spot) through this vehicle; we can automate this work and minimize the human intuitions. The video acquisition process depends on camera position and source light to obtain fine brightness in acquisition, we have tested 4 different types of combinations (camera position and source light) here to record the video and test the validity of proposed method. A sequence of real time rail frames are extracted from these videos and further processing (depending upon the data acquisition process) is done to identify the spots. After identification of spot each frame is divided in to 9 regions to know the particular region where the spot lies to avoid overlapping with noise, and so on. The proposed method will generate the information regarding in which region the spot lies, based on nine regions in each frame. From the generated results we have made some classification regarding data collection techniques, efficiency, time and speed. In this report, extensive experiments using image sequences from particular camera are reported and the experiments were done using intelligent vehicle as well as test vehicle and the results shows that we have achieved 95% success in identifying the spots when we use video as it is, in other method were we can skip some frames in pre-processing to increase the speed of video but the segmentation results we reduced to 85% and the time was very less compared to previous one. This shows the validity of proposed method in identification of spots lying on wooden railway sleepers where we can compromise between time and efficiency to get the desired result.
Resumo:
This study examines the question of how language teachers in a highly technologyfriendly university environment view machine translation and the implications that this has for the personal learning environments of students. It brings an activity-theory perspective to the question, examining the ways that the introduction of new tools can disrupt the relationship between different elements in an activity system. This perspective opens up for an investigation of the ways that new tools have the potential to fundamentally alter traditional learning activities. In questionnaires and group discussions, respondents showed general agreement that although use of machine translation by students could be considered cheating, students are bound to use it anyway, and suggested that teachers focus on the kinds of skills students would need when using machine translation and design assignments and exams to practice and assess these skills. The results of the empirical study are used to reflect upon questions of what the roles of teachers and students are in a context where many of the skills that a person needs to be able to interact in a foreign language increasingly can be outsourced to laptops and smartphones.
Resumo:
This study examines the question of how language teachers in a highly technology-friendly university environment view machine translation and the implications that this has for the personal learning environments of students. It brings an activity-theory perspective to the question, examining the ways that the introduction of new tools can disrupt the relationship between different elements in an activity system. This perspective opens up for an investigation of the ways that new tools have the potential to fundamentally alter traditional learning activities. In questionnaires and group discussions, respondents showed general agreement that although use of machine translation by students could be considered cheating, students are bound to use it anyway, and suggested that teachers focus on the kinds of skills students would need when using machine translation and design assignments and exams to practice and assess these skills. The results of the empirical study are used to reflect upon questions of what the roles of teachers and students are in a context where many of the skills that a person needs to be able to interact in a foreign language increasingly can be outsourced to laptops and smartphones.
Resumo:
In a global economy, manufacturers mainly compete with cost efficiency of production, as the price of raw materials are similar worldwide. Heavy industry has two big issues to deal with. On the one hand there is lots of data which needs to be analyzed in an effective manner, and on the other hand making big improvements via investments in cooperate structure or new machinery is neither economically nor physically viable. Machine learning offers a promising way for manufacturers to address both these problems as they are in an excellent position to employ learning techniques with their massive resource of historical production data. However, choosing modelling a strategy in this setting is far from trivial and this is the objective of this article. The article investigates characteristics of the most popular classifiers used in industry today. Support Vector Machines, Multilayer Perceptron, Decision Trees, Random Forests, and the meta-algorithms Bagging and Boosting are mainly investigated in this work. Lessons from real-world implementations of these learners are also provided together with future directions when different learners are expected to perform well. The importance of feature selection and relevant selection methods in an industrial setting are further investigated. Performance metrics have also been discussed for the sake of completion.
Resumo:
Developing successful navigation and mapping strategies is an essential part of autonomous robot research. However, hardware limitations often make for inaccurate systems. This project serves to investigate efficient alternatives to mapping an environment, by first creating a mobile robot, and then applying machine learning to the robot and controlling systems to increase the robustness of the robot system. My mapping system consists of a semi-autonomous robot drone in communication with a stationary Linux computer system. There are learning systems running on both the robot and the more powerful Linux system. The first stage of this project was devoted to designing and building an inexpensive robot. Utilizing my prior experience from independent studies in robotics, I designed a small mobile robot that was well suited for simple navigation and mapping research. When the major components of the robot base were designed, I began to implement my design. This involved physically constructing the base of the robot, as well as researching and acquiring components such as sensors. Implementing the more complex sensors became a time-consuming task, involving much research and assistance from a variety of sources. A concurrent stage of the project involved researching and experimenting with different types of machine learning systems. I finally settled on using neural networks as the machine learning system to incorporate into my project. Neural nets can be thought of as a structure of interconnected nodes, through which information filters. The type of neural net that I chose to use is a type that requires a known set of data that serves to train the net to produce the desired output. Neural nets are particularly well suited for use with robotic systems as they can handle cases that lie at the extreme edges of the training set, such as may be produced by "noisy" sensor data. Through experimenting with available neural net code, I became familiar with the code and its function, and modified it to be more generic and reusable for multiple applications of neural nets.
Resumo:
This study presents an approach to combine uncertainties of the hydrological model outputs predicted from a number of machine learning models. The machine learning based uncertainty prediction approach is very useful for estimation of hydrological models' uncertainty in particular hydro-metrological situation in real-time application [1]. In this approach the hydrological model realizations from Monte Carlo simulations are used to build different machine learning uncertainty models to predict uncertainty (quantiles of pdf) of the a deterministic output from hydrological model . Uncertainty models are trained using antecedent precipitation and streamflows as inputs. The trained models are then employed to predict the model output uncertainty which is specific for the new input data. We used three machine learning models namely artificial neural networks, model tree, locally weighted regression to predict output uncertainties. These three models produce similar verification results, which can be improved by merging their outputs dynamically. We propose an approach to form a committee of the three models to combine their outputs. The approach is applied to estimate uncertainty of streamflows simulation from a conceptual hydrological model in the Brue catchment in UK and the Bagmati catchment in Nepal. The verification results show that merged output is better than an individual model output. [1] D. L. Shrestha, N. Kayastha, and D. P. Solomatine, and R. Price. Encapsulation of parameteric uncertainty statistics by various predictive machine learning models: MLUE method, Journal of Hydroinformatic, in press, 2013.
Resumo:
O objetivo geral desta dissertação é estudar as possibilidades de flexibilização da função de saída do Sistema Hyper-Automaton além das rígidas possibilidades utilizadas atualmente com a utilização direta do HTML, objetivando eliminar as limitações como execução de aplicações proprietárias, caracteres incompatíveis entre browsers, excesso de tráfego na rede, padronizar aplicações, incrementar recursos didáticos, melhorar o suporte a aplicações multimídia atuais e futuras, facilitar a manutenção, implementação e reuso, alterar o layout de saída no browser de maneira dinâmica, explorar outros recursos de links, estabelecer padrões de organização do material instrucional criado pelo professor e muitas outras. Tal sistema anteriormente desenvolvido e funcionando adequadamente, é baseado no formalismo de Autômatos Finitos com Saída como modelo estrutural para organização de hiperdocumentos instrucionais, em especial em cursos na Web, tornando o material hipermídia independente do controle da aplicação. O Sistema Hyper-Automaton, tornou-se portanto, um sistema semi-automatizado para suporte a cursos na Web. Com o desdobramento da pesquisa, esta procurou ir mais além e descreveu possibilidades de não só estudar os aspectos possíveis de formatação de saída do sistema, mas reestruturá-lo totalmente sobre uma linguagem de markup padrão, buscando atualizá-lo tecnologicamente definindo outras possibilidades para que significativos trabalhos futuros possam de maneira mais clara serem alcançados. Dessa maneira, esta dissertação centra-se no estudo da aplicação de formas de flexibilização do Sistema Hyper-Automaton, tanto na parte da estruturação de documentos que são conteúdos instrucionais armazenados, bem como, na forma desse material tornar-se-á disponível através de navegadores WWW compatíveis com as tecnologias propostas, possibilitando o incremento substancial de funcionalidades necessárias para cursos onde a Web é o principal meio. Esta pesquisa dá prosseguimento a dois trabalhos anteriormente concluídos no PPGC e do Curso de Bacharelado em Ciência da Computação da UFRGS no ano de 2000, na seqüência, Hyper-Automaton: Hipertextos e Cursos na Web Utilizando Autômatos Finitos com Saída, dissertação de mestrado de Júlio Henrique de A. P. Machado e Hyper-Automaton: Implementação e Uso, trabalho de diplomação de Leonardo Penczek.
Resumo:
The work described in this thesis aims to support the distributed design of integrated systems and considers specifically the need for collaborative interaction among designers. Particular emphasis was given to issues which were only marginally considered in previous approaches, such as the abstraction of the distribution of design automation resources over the network, the possibility of both synchronous and asynchronous interaction among designers and the support for extensible design data models. Such issues demand a rather complex software infrastructure, as possible solutions must encompass a wide range of software modules: from user interfaces to middleware to databases. To build such structure, several engineering techniques were employed and some original solutions were devised. The core of the proposed solution is based in the joint application of two homonymic technologies: CAD Frameworks and object-oriented frameworks. The former concept was coined in the late 80's within the electronic design automation community and comprehends a layered software environment which aims to support CAD tool developers, CAD administrators/integrators and designers. The latter, developed during the last decade by the software engineering community, is a software architecture model to build extensible and reusable object-oriented software subsystems. In this work, we proposed to create an object-oriented framework which includes extensible sets of design data primitives and design tool building blocks. Such object-oriented framework is included within a CAD Framework, where it plays important roles on typical CAD Framework services such as design data representation and management, versioning, user interfaces, design management and tool integration. The implemented CAD Framework - named Cave2 - followed the classical layered architecture presented by Barnes, Harrison, Newton and Spickelmier, but the possibilities granted by the use of the object-oriented framework foundations allowed a series of improvements which were not available in previous approaches: - object-oriented frameworks are extensible by design, thus this should be also true regarding the implemented sets of design data primitives and design tool building blocks. This means that both the design representation model and the software modules dealing with it can be upgraded or adapted to a particular design methodology, and that such extensions and adaptations will still inherit the architectural and functional aspects implemented in the object-oriented framework foundation; - the design semantics and the design visualization are both part of the object-oriented framework, but in clearly separated models. This allows for different visualization strategies for a given design data set, which gives collaborating parties the flexibility to choose individual visualization settings; - the control of the consistency between semantics and visualization - a particularly important issue in a design environment with multiple views of a single design - is also included in the foundations of the object-oriented framework. Such mechanism is generic enough to be also used by further extensions of the design data model, as it is based on the inversion of control between view and semantics. The view receives the user input and propagates such event to the semantic model, which evaluates if a state change is possible. If positive, it triggers the change of state of both semantics and view. Our approach took advantage of such inversion of control and included an layer between semantics and view to take into account the possibility of multi-view consistency; - to optimize the consistency control mechanism between views and semantics, we propose an event-based approach that captures each discrete interaction of a designer with his/her respective design views. The information about each interaction is encapsulated inside an event object, which may be propagated to the design semantics - and thus to other possible views - according to the consistency policy which is being used. Furthermore, the use of event pools allows for a late synchronization between view and semantics in case of unavailability of a network connection between them; - the use of proxy objects raised significantly the abstraction of the integration of design automation resources, as either remote or local tools and services are accessed through method calls in a local object. The connection to remote tools and services using a look-up protocol also abstracted completely the network location of such resources, allowing for resource addition and removal during runtime; - the implemented CAD Framework is completely based on Java technology, so it relies on the Java Virtual Machine as the layer which grants the independence between the CAD Framework and the operating system. All such improvements contributed to a higher abstraction on the distribution of design automation resources and also introduced a new paradigm for the remote interaction between designers. The resulting CAD Framework is able to support fine-grained collaboration based on events, so every single design update performed by a designer can be propagated to the rest of the design team regardless of their location in the distributed environment. This can increase the group awareness and allow a richer transfer of experiences among them, improving significantly the collaboration potential when compared to previously proposed file-based or record-based approaches. Three different case studies were conducted to validate the proposed approach, each one focusing one a subset of the contributions of this thesis. The first one uses the proxy-based resource distribution architecture to implement a prototyping platform using reconfigurable hardware modules. The second one extends the foundations of the implemented object-oriented framework to support interface-based design. Such extensions - design representation primitives and tool blocks - are used to implement a design entry tool named IBlaDe, which allows the collaborative creation of functional and structural models of integrated systems. The third case study regards the possibility of integration of multimedia metadata to the design data model. Such possibility is explored in the frame of an online educational and training platform.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)