960 resultados para MYOSTATIN BLOCKADE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: The goal of this study was to investigate whether angiotensin II receptor blockers (ARBs) induce a comparable blockade of AT1 receptors in the vasculature and in the kidney when the renin-angiotensin system is activated by a thiazide diuretic. METHOD: Thirty individuals participated in this randomized, controlled, single-blind study. The blood pressure and renal hemodynamic and tubular responses to a 1-h infusion of exogenous angiotensin II (Ang II 3 ng/kg per min) were investigated before and 24 h after a 7-day administration of either irbesartan 300 mg alone or in association with 12.5 or 25 mg hydrochlorothiazide (HCTZ). Irbesartan 300/25 mg was also compared with losartan 100 mg, valsartan 160 mg, and olmesartan 20 mg all in association with 25 mg HCTZ. Each participant received two treatments with a 1-week washout period between treatments. RESULTS: The blood pressure response to Ang II was blocked by more than 90% with irbesartan alone or in association with HCTZ and with olmesartan/HCTZ and by nearly 60% with valsartan/HCTZ and losartan/HCTZ (P < 0.05). In the kidney, Ang II reduced renal plasma flow by 36% at baseline (P < 0.001). Irbesartan +/- HCTZ and olmesartan/HCTZ blocked the renal hemodynamic response to Ang II nearly completely, whereas valsartan/HCTZ and losartan/HCTZ only blunted this effect by 34 and 45%, respectively. At the tubular level, Ang II significantly reduced urinary volume (-84%) and urinary sodium excretion (-65%) (P < 0.01). These tubular effects of Ang II were only partially blunted by the administration of ARBs. CONCLUSION: These data demonstrate that ARBs prescribed at their recommended doses do not block renal tubular AT1 receptors as effectively as vascular receptors do. This observation may account for the need of higher doses of ARB for renal protection. Moreover, our results confirm that there are significant differences between ARBs in their capacity to induce a sustained vascular and tubular blockade of Ang II receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Industrial pollution due to heavy metals such as mercury is a major concern for the environment and public health. Mercury, in particular methylmercury (MeHg), primarily affects brain development and neuronal activity, resulting in neurotoxic effects. Because chemokines can modulate brain functions and are involved in neuroinflammatory and neurodegenerative diseases, we tested the possibility that the neurotoxic effect of MeHg may interfere with the chemokine CCL2. We have used an original protocol in young mice using a MeHg-contaminated fish-based diet for 3 months relevant to human MeHg contamination. We observed that MeHg induced in the mice cortex a decrease in CCL2 concentrations, neuronal cell death, and microglial activation. Knock-out (KO) CCL2 mice fed with a vegetal control food already presented a decrease in cortical neuronal cell density in comparison with wild-type animals under similar diet conditions, suggesting that the presence of CCL2 is required for normal neuronal survival. Moreover, KO CCL2 mice showed a pronounced neuronal cell death in response to MeHg. Using in vitro experiments on pure rat cortical neurons in culture, we observed by blockade of the CCL2/CCR2 neurotransmission an increased neuronal cell death in response to MeHg neurotoxicity. Furthermore, we showed that sod genes are upregulated in brain of wild-type mice fed with MeHg in contrast to KO CCL2 mice and that CCL2 can blunt in vitro the decrease in glutathione levels induced by MeHg. These original findings demonstrate that CCL2 may act as a neuroprotective alarm system in brain deficits due to MeHg intoxication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Targeting the phosphatidylinositol-3-kinase (PI3K) is a promising approach in cancer therapy. In particular, PI3K blockade leads to the inhibition of AKT, a major downstream effector responsible for the oncogenic activity of PI3K. However, we report here that small molecule inhibitors of PI3K only transiently block AKT signaling. Indeed, treatment of cancer cells with PI3K inhibitors results in a rapid inhibition of AKT phosphorylation and signaling which is followed by the reactivation of AKT signaling after 48h as observed by Western blot. Reactivation of AKT signaling occurs despite effective inhibition of PI3K activity by PI3K inhibitors. In addition, wortmannin, a broad range PI3K inhibitor, did not block AKT reactivation suggesting that AKT signals independently of PI3K. In a therapeutical perspective, combining AKT and PI3K inhibitors exhibit stronger anti-proliferative and pro-apoptotic effects compared to AKT or PI3K inhibitors alone. Similarly, in a tumor xenograft mouse model, concomitant PI3K and AKT blockade results in stronger anti-cancer activity compared with either blockade alone. This study shows that PI3K inhibitors only transiently inhibit AKT which limits their antitumor activities. It also provides the proof of concept to combine PI3K inhibitors with AKT inhibitors in cancer therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: The pharmacokinetic and pharmacodynamic properties of YM087, (4'-[(2-methyl-1,4,5,6- tetrahydroimidazo[4,5-d][1]benzazepin-6-yl)-carbonyl]-2-p henylbenzanilide monohydrochloride), a new orally active, dual V1/V2 receptor antagonist were characterised in healthy normotensive subjects. METHODS: Six subjects were randomly allocated to receive, at 1-week intervals, a single oral dose of 60 mg YM087 and a single i.v. dose of 50 mg YM087 in an open-label, crossover study. RESULTS: YM087 had an oral bioavailability of 44% and a short half-life. Upon oral and i.v. administration of YM087, a significant sevenfold increase in urine flow rate and a fall in urinary osmolality (from 600 mosmol/l to less than 100-mosmol/l) were observed with a peak effect 2 h after drug intake suggesting effective vasopressin V2 receptor blockade. Simultaneously, significant increases in plasma osmolality (from 283 +/- 1.3 mosmol/l to 288 +/- 1.0 mosmol/l after i.v. and from 283 +/- 2.1 mosmol/l to 289 +/- 1.7-mosmol/l after oral administration) and vasopressin levels (from 1.5 +/- 0.3 pg/ml to 3.7 +/- 0.6 pg/ml after i.v. and from 0.9 +/- 0.1 pg/ml to 3.9 +/- 0.7 pg/ml after oral administration) were found. When administered i.v., YM087 inhibited the vasopressin-induced skin vasoconstriction, suggesting a blockade of V1 receptors. However, the YM087-induced antagonism of V1 receptors was less pronounced than V2 receptor blockade. CONCLUSION: These data show that YM087 is an effective dual V1/V2 receptor antagonist in man.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hemeoxygenase-2 (HO-2) is an antioxidant enzyme that can modulate recombinant maxi-K(+) channels and has been proposed to be the acute O(2) sensor in the carotid body (CB). We have tested the physiological contribution of this enzyme to O(2) sensing using HO-2 null mice. HO-2 deficiency leads to a CB phenotype characterized by organ growth and alteration in the expression of stress-dependent genes, including the maxi-K(+) channel alpha-subunit. However, sensitivity to hypoxia of CB is remarkably similar in HO-2 null animals and their control littermates. Moreover, the response to hypoxia in mouse and rat CB cells was maintained after blockade of maxi-K(+) channels with iberiotoxin. Hypoxia responsiveness of the adrenal medulla (AM) (another acutely responding O(2)-sensitive organ) was also unaltered by HO-2 deficiency. Our data suggest that redox disregulation resulting from HO-2 deficiency affects maxi-K(+) channel gene expression but it does not alter the intrinsic O(2) sensitivity of CB or AM cells. Therefore, HO-2 is not a universally used acute O(2) sensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In patients with cervical spine injury, a cervical collar may prevent cervical spine movements but renders tracheal intubation with a standard laryngoscope difficult if not impossible. We hypothesized that despite the presence of a semi-rigid cervical collar and with the patient's head taped to the trolley, we would be able to intubate all patients with the GlideScopeR and its dedicated stylet. Methods: 50 adult patients (ASA 1 or 2, BMI ≤35 kg/m2) scheduled for elective surgical procedures requiring tracheal intubation were included. After standardized induction of general anesthesia and neuromuscular blockade, the neck was immobilized with an appropriately sized semi-rigid Philadelphia Patriot® cervical collar, the head was taped to the trolley. Laryngoscopy was attempted using a Macintosh laryngoscope blade 4 and the modified Cormack Lehane grade was noted. Subsequently, laryngoscopy with the GlideScopeR was graded and followed by oro-tracheal intubation. Results: All patients were successfully intubated with the GlideScopeR and its dedicated stylet. The median intubation time was 50 sec [43; 61]. The modified Cormack Lehane grade was 3 or 4 at direct laryngoscopy. It was significantly reduced with the GlideScopeR (p <0.0001), reaching 2a in most of patients. Maximal mouth opening was significantly reduced with the cervical collar applied, 4.5 cm [4.5; 5.0] vs. 2.0 cm [1.8; 2.0] (p <0.0001). Conclusions: The GlideScope® allows oro-tracheal intubation in patients having their cervical spine immobilized by a semi-rigid collar and their head taped to the trolley. It furthermore decreases significantly the modified Cormack Lehane grade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity-induced chronic inflammation leads to activation of the immune system that causes alterations of iron homeostasis including hypoferraemia, iron-restricted erythropoiesis, and finally mild-to-moderate anaemia. Thus, preoperative anaemia and iron deficiency are common among obese patients scheduled for bariatric surgery (BS). Assessment of patients should include a complete haematological and biochemical laboratory work-up, including measurement of iron stores, vitamin B12 and folate. In addition, gastrointestinal evaluation is recommended for most patients with iron-deficiency anaemia. On the other hand, BS is a long-lasting inflammatory stimulus in itself and entails a reduction of the gastric capacity and/or exclusion from the gastrointestinal tract which impair nutrients absorption, including dietary iron. Chronic gastrointestinal blood loss and iron-losingenteropathy may also contribute to iron deficiency after BS. Perioperative anaemia has been linked to increased postoperative morbidity and mortality and decreased quality of life after major surgery, whereas treatment of perioperative anaemia, and even haematinic deficiency without anaemia, has been shown to improve patient outcomes and quality of life. However, long-term follow-up data in regard to prevalence, severity, and causes of anaemia after BS are mostly absent. Iron supplements should be administered to patients after BS, but compliance with oral iron is no good. In addition, once iron deficiency has developed, it may prove refractory to oral treatment. In these situations, IV iron (which can circumvent the iron blockade at enterocytes and macrophages) has emerged as a safe and effective alternative for perioperative anaemia management. Monitoring should continue indefinitely even after the initial iron repletion and anaemia resolution, and maintenance IV iron treatment should be provided as required. New IV preparations, such ferric carboxymaltose, are safe, easy to use and up to 1000 mg can be given in a single session, thus providing an excellent tool to avoid or treat iron deficiency in this patient population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose/Objective: Protective CD8+ T cell responses rely on TCRdependent recognition of immunogenic peptides presented by MHC I. Cytolytic T lymphocytes directed against self/tumor antigens express TCRs of lower affinity/avidity than pathogen-derived T lymphocytes and elicit less protective immune responses due to mechanisms of central and peripheral tolerance. Anti-tumor T cell reactivity can be improved by increasing the TCR-pMHC affinity within physiological limits, while intriguingly further increase in the supraphysiological range (KD < 1 lM) leads to drastic functional declines. We aim at identifying the molecular mechanisms underlying the loss of T cell responsiveness associated with supraphysiological TCRpMHC affinities in order to improve effectiveness of TCR-engineered T cells used in adoptive cell transfer (ACT) cancer immunotherapy. Materials and methods: Using a panel of human CD8+ T cells engineered with TCRs of incremental affinity for the HLA-A2-resticted tumor cancer testis antigen NY-ESO-1, we performed comparative gene expression microarray and TCR-mediated signaling analysis together with membrane receptors level analysis. Results: As compared to cells expressing TCR affinities generating optimal function (KD from 5to 1 lM), those with supraphysiological affinity (KD from 1 lM to 15 nM) had an overall reduced expression of genes implied in signaling, cell activation and proliferation, and showed impaired proximal and distal TCR signaling capacity. This correlated with a decline in surface expression of CD8b, CD28 and activatory TNFR superfamily members. Importantly, expression of inhibitory receptor PD-1 and SHP-1 phosphatase was upregulated in a TCR affinity-dependent manner. Consequently, PD-L1 and SHP-1 blockade restored the function of T cells with high TCRs affinity. Moreover, SHP-1 inhibition also augmented functional efficacy of T cells with TCRs of optimal affinity. Conclusions: Our findings indicate that TCR affinity-associated regulatory mechanisms control T cells responsiveness at various levels to limit potential auto-reactive cytotoxic effects. They also support the development of ACT therapies combined with blockade of inhibitory molecules such as SHP-1 to enhance effectiveness of T cell immunotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pregnancy and obesity are frequently associated with diminished insulin sensitivity, which is normally compensated for by an expansion of the functional β cell mass that prevents chronic hyperglycemia and development of diabetes mellitus. The molecular basis underlying compensatory β cell mass expansion is largely unknown. We found in rodents that β cell mass expansion during pregnancy and obesity is associated with changes in the expression of several islet microRNAs, including miR-338-3p. In isolated pancreatic islets, we recapitulated the decreased miR-338-3p level observed in gestation and obesity by activating the G protein-coupled estrogen receptor GPR30 and the glucagon-like peptide 1 (GLP1) receptor. Blockade of miR-338-3p in β cells using specific anti-miR molecules mimicked gene expression changes occurring during β cell mass expansion and resulted in increased proliferation and improved survival both in vitro and in vivo. These findings point to a major role for miR-338-3p in compensatory β cell mass expansion occurring under different insulin resistance states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Morphogens of the Wnt protein family are the secreted lipoglycoprotein ligands which initiate several pathways heavily involved in the coordination of various developmental stages of organisms in the majority of animal species. Deregulation of these pathways in the adult leads to formation and sustaining of multiple types of cancer. The latter notion is reinforced by the fact that the very discovery of the first Wnt ligand was due to its role as the causative factor of carcinogenic transformation (Nusse and Varmus, 1982). Nowadays our knowledge on Wnt signaling has "moved with the times" and these pathways were identified to be often crucial for tumor formation, its interactions with the microenvironment, and promotion of the metastases (Huang and Du, 2008; Zerlin et al., 2008; Jessen, 2009). Thus the relevance of the pathway as the target for drug development has further increased in the light of modern paradigms of the complex cancer treatments which target also spreading and growth- promoting factors of tumors by specific and highly efficient substances (Pavet et al., 2010). Presently the field of the Wnt-targeting drug research is almost solely dominated by assays based on transcriptional activation induced by the signaling. This approach resulted in development of a number of promising substances (Lee et al., 2011). Despite its effectiveness, the method nevertheless suffers from several drawbacks. Among the major ones is the fact that this approach is prone to identify compounds targeting rather downstream effectors of the pathway, which are indiscriminately used by all the subtypes of the Wnt signaling. Additionally, proteins which are involved in several signaling cascades and not just the Wnt pathway turn out as targets of the new compounds. These issues increase risks of side effects due to off-target interactions and blockade of the pathway in healthy cells. In the present work we put forward a novel biochemical approach for drug development on the Wnt pathway. It targets Frizzleds (Fzs) - a family of 7-transmbembrane proteins which serve as receptors for Wnt ligands. They offer unique properties for the development of highly specific and effective drugs as they control all branches of the Wnt signaling. Recent advances in the understanding of the roles of heterotrimeric G proteins downstream from Fzs (Katanaev et al., 2005; Liu et al., 2005; Jernigan et al., 2010) suggest application of enzymatic properties of these effectors to monitor the receptor-mediated events. We have applied this knowledge in practice and established a specific and efficient method based on utilization of a novel high-throughput format of the GTP-binding assay to follow the activation of Fzs. This type of assay is a robust and well-established technology for the research and screenings on the GPCRs (Harrison and Traynor, 2003). The conventional method of detection involves the radioactively labeled non-hydrolysable GTP analog [35S]GTPyS. Its application in the large-scale screenings is however problematic which promoted development of the novel non-radioactive GTP analog GTP-Eu. The new molecule employs phenomenon of the time-resolved fluorescence to provide sensitivity comparable to the conventional radioactive substance. Initially GTP-Eu was tested only in one of many possible types of GTP-binding assays (Frang et al., 2003). In the present work we expand these limits by demonstrating the general comparability of the novel label with the radioactive method in various types of assays. We provide a biochemical characterization of GTP-Eu interactions with heterotrimeric and small GTPases and a comparative analysis of the behavior of the new label in the assays involving heterotrimeric G protein effectors. These developments in the GTP-binding assay were then applied to monitor G protein activation by the Fz receptors. The data obtained in mammalian cultured cell lines provides for the first time an unambiguous biochemical proof for direct coupling of Fzs with G proteins. The specificity of this interaction has been confirmed by the experiments with the antagonists of Fz and by the pertussis toxin-mediated deactivation. Additionally we have identified the specificity of Wnt3a towards several members of the Fz family and analyzed the properties of human Fz-1 which was found to be the receptor coupled to the Gi/o family of G proteins. Another process playing significant role in the functioning of every GPCR is endocytosis. This phenomenon can also be employed for drug screenings on GPCRs (Bickle, 2010). In the present work we have demonstrated that Drosophila Fz receptors are involved in an unusual for many GPCRs manifestation of the receptor-mediated internalization. Through combination of biochemical approaches and studies on Drosophila as the model organism we have shown that direct interactions of the Fzs and the α-subunit of the heterotrimeric G protein Go with the small GTPase Rab5 regulate internalization of the receptor in early endosomes. We provide data uncovering the decisive role of this self-promoted endocytosis in formation of a proper signaling output in the canonical as well as planar cell polarity (PCP) pathways regulated by Fz. The results of this work thus establish a platform for the high-throughput screening to identify substances active in the cancer-related Wnt pathways. This methodology has been adjusted and applied to provide the important insights in Fz functioning and will be instrumental for further investigations on the Wnt-mediated pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims It is well established that dysfunction of voltage-dependent ion channels results in arrhythmias and conduction disturbances in the foetal and adult heart. However, the involvement of voltage-insensitive cationic TRPC (transient receptor potential canonical) channels remains unclear. We assessed the hypothesis that TRPC channels play a crucial role in the spontaneous activity of the developing heart.Methods and results TRPC isoforms were investigated in isolated hearts obtained from 4-day-old chick embryos. Using RT-PCR, western blotting and co-immunoprecipitation, we report for the first time that TRPC1, 3, 4, 5, 6, and 7 isoforms are expressed at the mRNA and protein levels and that they can form a macromolecular complex with the alpha 1C subunit of the L-type voltage-gated calcium channel (Cav1.2) in atria and ventricle. Using ex vivo electrocardiograms, electrograms of isolated atria and ventricle and ventricular mechanograms, we found that inhibition of TRPC channels by SKF-96365 leads to negative chrono-, dromo-, and inotropic effects, prolongs the QT interval, and provokes first-and second-degree atrioventricular blocks. Pyr3, a specific antagonist of TRPC3, affected essentially atrioventricular conduction. On the other hand, specific blockade of the L-type calcium channel with nifedipine rapidly stopped ventricular contractile activity without affecting rhythmic electrical activity.Conclusions These results give new insights into the key role that TRPC channels, via interaction with the Cav1.2 channel, play in regulation of cardiac pacemaking, conduction, ventricular activity, and contractility during cardiogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adhesive interactions with stromal cells and the extracellular matrix are essential for the differentiation and migration of hematopoietic progenitors. In the erythrocytic lineage, a number of adhesion molecules are expressed in the developing erythrocytes and are thought to play a role in the homing and maturation of erythrocytic progenitors. However, many of these molecules are lost during the final developmental stages leading to mature erythrocytes. One of the adhesion molecules that remains expressed in mature, circulating erythrocytes is CD147. This study shows that blockade of this molecule on the cell surface by treatment with F(ab')(2) fragments of anti-CD147 monoclonal antibody disrupts the circulation of erythrocytes, leading to their selective trapping in the spleen. Consequently, mice develop an anemia, and de novo, erythropoietin-mediated erythropoiesis in the spleen. In contrast, these changes were not seen in mice similarly treated with another antierythrocyte monoclonal antibody with a different specificity. These results suggest that the CD147 expressed on erythrocytes likely plays a critical role in the recirculation of mature erythrocytes from the spleen into the general circulation. (Blood. 2001;97:3984-3988)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé Les mutations du gène APP (amyloïde de la protéine de précurseur) sur le chromosome 21 mènent à une surproduction de protéines β amyloïdes dans la maladie d'Alzheimer (MA). Il existe donc un consensus impliquant la cascade amyloïde dans la genèse et le développement de la MA. C'est pourquoi, afin d'évaluer l'hypothèse de la cascade inflammatoire de la MA, on combine des manipulations génétiques chez des modèles de souris transgéniques avec des traitements anti-inflammatoires. Les animaux porteurs d'une mutation génétique induite permettent d'évaluer le rôle de certains gènes dans le développement de la maladie. Pour ce faire j'ai étudié les performances de différentes cohortes de souris soumises à un ensemble de trois épreuves comportementales complémentaires ; la première étudiant les conduites exploratoires, la deuxième évaluant la capacité de l'animal à effectuer un apprentissage de lieu et la troisième explorant l'efficacité des animaux dans une tâche dite d'élimination. Enfin, une évaluation complémentaire a été fondée sur le répertoire des troubles du comportement des animaux. Chez les animaux APP homozygotes, l'organisation de la mémoire se dégrade et se modifie avec l'âge. Chez ces animaux, le déficit des mémoires de références et de travail se manifeste déjà chez les souris jeunes (dès l'âge de 50 jours).De plus, il est apparu un certain nombre de troubles comportementaux. Enfin les APP homozygotes sont ceux qui ont le plus de dépôt de plaques amyloïdes localisé dans l'hippocampe. Chez les animaux APP hétérozygotes, tant la mémoire de référence, utilisée au cours d'un apprentissage de lieu, que la mémoire de travail permettant d'éviter des bras déjà visités, ne sont affectées que chez les sujets de 15 mois. De plus, tous les troubles du comportement sont présents à 15 mois, mais de manière moins intense que chez les animaux APP homozygotes. Un traitement anti-TNF administré aux APP hétérozygotes n'a pas permis d'améliorer leur performance mais a un effet bénéfique sur les troubles du comportement. Enfin, le pourcentage des dépôts de plaques a été estimé à trois fois moins élevé chez ces animaux hétérozygotes de 16 mois que chez les APP homozygotes de 8 mois. Chez les animaux APP hétérozygotes dont le gène TNFα est bloqué, les mémoires de travail et de référence sont altérées déjà à l'âge de 6 mois, en dépit du blocage de l'expression de TNF. Ces jeunes animaux ont même une capacité cognitive inférieure à celle des animaux hétérozygotes APP, en gardant toutefois leur activité et performance exploratoires intactes. Ainsi, il semble que le blocage de l'expression du gène TNFα chez des souris APP n'influence pas leurs capacités cognitives mais permet, d'une part, d'éviter l'apparition des troubles du comportement et d'autre part, ralentit le processus du déclin cognitif. Enfin, le pourcentage de plaques amyloïdes a été évalué à deux fois plus élevés pour les KO TNF-α APP hétérozygotes de 15 mois par rapport à des APP hétérozygotes sans traitement du même âge. Chez les animaux APP hétérozygotes surexprimant le TNFα, cette association génétique péjore la performance cognitive comparée à celle des APP homozygotes. Ces animaux ont une altération des mémoires de travail et de référence équivalente à celle retrouvée chez des APP homozygotes. Un traitement anti-inflammatoire administré à ces souris n'améliore pas la capacité cognitive mais permet d'une part, d'éviter l'apparition des troubles comportementaux, et d'autre part, d'entraîner la presque disparition des plaques amyloïdes. Abstract Mutations on the amyloid precursor protein (APP) gene on chromosome 21 lead to an overproduction of β amyloid in both human early onset familial Alzheimer's Disease (AD) and transgenic (TG) mice. On the other hand, inflammatory responses in the brain seem to contribute to the genesis and evolution of neurodegenerative damage. To study the influence of inflammatory factors - especially TNFα - on brain amyloid and behavioural components, TG mice expressing mutant amyloid precursor protein were treated with anti-TNFα antibody and compared with controls injected with PBS buffer or human globulins, as well as with APP mice knockout for the TNFα gene. The APP/V717 mutation leads to a brain deposit of amyloid and to significant behavioural deficits in both homozygous at different ages and heterozygous only at 15 months. The percentage of amyloid is almost triple in APP+/+ than in APP+/- animals, indicating a gene dosage effect. There is no significant effect of an anti-TNF treatment on the deposit of brain amyloid nor spatial learning capabilities. Transgenic mice show also stereotyped behaviour but the anti-TNF treatment decreases the production of stereotypies. The blockade of gene TNFα seems several cognitive alterations and increases the production of amyloid in APP mice at 15 months; but this combination allows to avoid the appearance of stereotyped behavior and in addition, the process of the cognitive decline slows down. Tg6074 mice (overexpressing TNF) increase deleterious effects on behavioural adaptive resources. Treatment with anti-TNF doesn't show changes in cognitive performances but seems to increase the production of amyloid and the stereotyped behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leprosy is a spectral disease exhibiting two polar sides, namely, lepromatous leprosy (LL) characterised by impaired T-cell responses and tuberculoid leprosy in which T-cell responses are strong. Proper T-cell activation requires signalling through costimulatory molecules expressed by antigen presenting cells and their ligands on T-cells. We studied the influence of costimulatory molecules on the immune responses of subjects along the leprosy spectrum. The expression of the costimulatory molecules was evaluated in in vitro-stimulated peripheral blood mononuclear cells of lepromatous and tuberculoid patients and healthy exposed individuals (contacts). We show that LL patients have defective monocyte CD86 expression, which likely contributes to the impairment of the antigen presentation process and to patients anergy. Accordingly, CD86 but not CD80 blockade inhibited the lymphoproliferative response to Mycobacterium leprae. Consistent with the LL anergy, there was reduced expression of the positive signalling costimulatory molecules CD28 and CD86 on the T-cells in these patients. In contrast, tuberculoid leprosy patients displayed increased expression of the negative signalling molecules CD152 and programmed death-1 (PD-1), which represents a probable means of modulating an exacerbated immune response and avoiding immunopathology. Notably, the contacts exhibited proper CD86 and CD28 expression but not exacerbated CD152 or PD-1 expression, suggesting that they tend to develop a balanced immunity without requiring immunosuppressive costimulatory signalling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The programmed death 1 (PD-1) receptor is a negative regulator of activated T cells and is up-regulated on exhausted virus-specific CD8(+) T cells in chronically infected mice and humans. Programmed death ligand 1 (PD-L1) is expressed by multiple tumors, and its interaction with PD-1 resulted in tumor escape in experimental models. To investigate the role of PD-1 in impairing spontaneous tumor Ag-specific CD8(+) T cells in melanoma patients, we have examined the effect of PD-1 expression on ex vivo detectable CD8(+) T cells specific to the tumor Ag NY-ESO-1. In contrast to EBV, influenza, or Melan-A/MART-1-specific CD8(+) T cells, NY-ESO-1-specific CD8(+) T cells up-regulated PD-1 expression. PD-1 up-regulation on spontaneous NY-ESO-1-specific CD8(+) T cells occurs along with T cell activation and is not directly associated with an inability to produce cytokines. Importantly, blockade of the PD-1/PD-L1 pathway in combination with prolonged Ag stimulation with PD-L1(+) APCs or melanoma cells augmented the number of cytokine-producing, proliferating, and total NY-ESO-1-specific CD8(+) T cells. Collectively, our findings support the role of PD-1 as a regulator of NY-ESO-1-specific CD8(+) T cell expansion in the context of chronic Ag stimulation. They further support the use of PD-1/PD-L1 pathway blockade in cancer patients to partially restore NY-ESO-1-specific CD8(+) T cell numbers and functions, increasing the likelihood of tumor regression.