994 resultados para MULTIPLE SOLUTIONS
Resumo:
Background: Multiple Sclerosis (MS) is a chronic disease of the central nervous system that affects more often young adults in the prime of his career and personal development, with no cure and unknown causes. The most common signs and symptoms are fatigue, muscle weakness, changes in sensation, ataxia, changes in balance, gait difficulties, memory difficulties, cognitive impairment and difficulties in problem solving MS is a relatively common neurological disorder in which various impairments and disabilities impact strongly on function and daily life activities. Purpose: The aim of this study is to examine the implications of an Intervention Program of Physical Activity (IPPA) in quality of life in MS patients, six months after the intervention.
Resumo:
Background: Multiple sclerosis is a disease of the central nervous system that affects more frequently young women. It is a progressive and unpredictable disease, resulting in some cases of disabilities and limitations to physical, psychological and social level. Purpose: To review the literature for evidence based of the effectiveness of physiotherapy intervention in multiple sclerosis.
Resumo:
Dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for teams of mobile robots, that must transport a large object and simultaneously avoid collisions with (either static or dynamic) obstacles. Here we demonstrate in simulations and implementations in real robots that it is possible to simplify the architectures presented in previous work and to extend the approach to teams of n robots. The robots have no prior knowledge of the environment. The motion of each robot is controlled by a time series of asymptotical stable states. The attractor dynamics permits the integration of information from various sources in a graded manner. As a result, the robots show a strikingly smooth an stable team behaviour.
Resumo:
In global scientific experiments with collaborative scenarios involving multinational teams there are big challenges related to data access, namely data movements are precluded to other regions or Clouds due to the constraints on latency costs, data privacy and data ownership. Furthermore, each site is processing local data sets using specialized algorithms and producing intermediate results that are helpful as inputs to applications running on remote sites. This paper shows how to model such collaborative scenarios as a scientific workflow implemented with AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic), a decentralized framework offering a feasible solution to run the workflow activities on distributed data centers in different regions without the need of large data movements. The AWARD workflow activities are independently monitored and dynamically reconfigured and steering by different users, namely by hot-swapping the algorithms to enhance the computation results or by changing the workflow structure to support feedback dependencies where an activity receives feedback output from a successor activity. A real implementation of one practical scenario and its execution on multiple data centers of the Amazon Cloud is presented including experimental results with steering by multiple users.
Resumo:
The long term evolution (LTE) is one of the latest standards in the mobile communications market. To achieve its performance, LTE networks use several techniques, such as multi-carrier technique, multiple-input-multiple-output and cooperative communications. Inside cooperative communications, this paper focuses on the fixed relaying technique, presenting a way for determining the best position to deploy the relay station (RS), from a set of empirical good solutions, and also to quantify the associated performance gain using different cluster size configurations. The best RS position was obtained through realistic simulations, which set it as the middle of the cell's circumference arc. Additionally, it also confirmed that network's performance is improved when the number of RSs is increased. It was possible to conclude that, for each deployed RS, the percentage of area served by an RS increases about 10 %. Furthermore, the mean data rate in the cell has been increased by approximately 60 % through the use of RSs. Finally, a given scenario with a larger number of RSs, can experience the same performance as an equivalent scenario without RSs, but with higher reuse distance. This conduces to a compromise solution between RS installation and cluster size, in order to maximize capacity, as well as performance.
Resumo:
This paper presents solutions for fault detection and diagnosis of two-level, three phase voltage-source inverter (VSI) topologies with IGBT devices. The proposed solutions combine redundant standby VSI structures and contactors (or relays) to improve the fault-tolerant capabilities of power electronics in applications with safety requirements. The suitable combination of these elements gives the inverter the ability to maintain energy processing in the occurrence of several failure modes, including short-circuit in IGBT devices, thus extending its reliability and availability. A survey of previously developed fault-tolerant VSI structures and several aspects of failure modes, detection and isolation mechanisms within VSI is first discussed. Hardware solutions for the protection of power semiconductors with fault detection and diagnosis mechanisms are then proposed to provide conditions to isolate and replace damaged power devices (or branches) in real time. Experimental results from a prototype are included to validate the proposed solutions.
Resumo:
In the last twenty years genetic algorithms (GAs) were applied in a plethora of fields such as: control, system identification, robotics, planning and scheduling, image processing, and pattern and speech recognition (Bäck et al., 1997). In robotics the problems of trajectory planning, collision avoidance and manipulator structure design considering a single criteria has been solved using several techniques (Alander, 2003). Most engineering applications require the optimization of several criteria simultaneously. Often the problems are complex, include discrete and continuous variables and there is no prior knowledge about the search space. These kind of problems are very more complex, since they consider multiple design criteria simultaneously within the optimization procedure. This is known as a multi-criteria (or multiobjective) optimization, that has been addressed successfully through GAs (Deb, 2001). The overall aim of multi-criteria evolutionary algorithms is to achieve a set of non-dominated optimal solutions known as Pareto front. At the end of the optimization procedure, instead of a single optimal (or near optimal) solution, the decision maker can select a solution from the Pareto front. Some of the key issues in multi-criteria GAs are: i) the number of objectives, ii) to obtain a Pareto front as wide as possible and iii) to achieve a Pareto front uniformly spread. Indeed, multi-objective techniques using GAs have been increasing in relevance as a research area. In 1989, Goldberg suggested the use of a GA to solve multi-objective problems and since then other researchers have been developing new methods, such as the multi-objective genetic algorithm (MOGA) (Fonseca & Fleming, 1995), the non-dominated sorted genetic algorithm (NSGA) (Deb, 2001), and the niched Pareto genetic algorithm (NPGA) (Horn et al., 1994), among several other variants (Coello, 1998). In this work the trajectory planning problem considers: i) robots with 2 and 3 degrees of freedom (dof ), ii) the inclusion of obstacles in the workspace and iii) up to five criteria that are used to qualify the evolving trajectory, namely the: joint traveling distance, joint velocity, end effector / Cartesian distance, end effector / Cartesian velocity and energy involved. These criteria are used to minimize the joint and end effector traveled distance, trajectory ripple and energy required by the manipulator to reach at destination point. Bearing this ideas in mind, the paper addresses the planning of robot trajectories, meaning the development of an algorithm to find a continuous motion that takes the manipulator from a given starting configuration up to a desired end position without colliding with any obstacle in the workspace. The chapter is organized as follows. Section 2 describes the trajectory planning and several approaches proposed in the literature. Section 3 formulates the problem, namely the representation adopted to solve the trajectory planning and the objectives considered in the optimization. Section 4 studies the algorithm convergence. Section 5 studies a 2R manipulator (i.e., a robot with two rotational joints/links) when the optimization trajectory considers two and five objectives. Sections 6 and 7 show the results for the 3R redundant manipulator with five goals and for other complementary experiments are described, respectively. Finally, section 8 draws the main conclusions.
Resumo:
The three-dimensional (3D) exact solutions developed in the early 1970s by Pagano for simply supported multilayered orthotropic composite plates and later in the 1990s extended to piezoelectric plates by Heyliger have been extremely useful in the assessment and development of advanced laminated plate theories and related finite element models. In fact, the well-known test cases provided by Pagano and by Heyliger in those earlier works are still used today as benchmark solutions. However, the limited number of test cases whose 3D exact solutions have been published has somewhat restricted the assessment of recent advanced models to the same few test cases. This work aims to provide additional test cases to serve as benchmark exact solutions for the static analysis of multilayered piezoelectric composite plates. The method introduced by Heyliger to derive the 3D exact solutions has been successfully implemented using symbolic computing and a number of new test cases are here presented thoroughly. Specifically, two multilayered plates using PVDF piezoelectric material are selected as test cases under two different loading conditions and considering three plate aspect ratios for thick, moderately thick and thin plate, in a total of 12 distinct test cases. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this paper is to discuss the linear solution of equality constrained problems by using the Frontal solution method without explicit assembling. Design/methodology/approach - Re-written frontal solution method with a priori pivot and front sequence. OpenMP parallelization, nearly linear (in elimination and substitution) up to 40 threads. Constraints enforced at the local assembling stage. Findings - When compared with both standard sparse solvers and classical frontal implementations, memory requirements and code size are significantly reduced. Research limitations/implications - Large, non-linear problems with constraints typically make use of the Newton method with Lagrange multipliers. In the context of the solution of problems with large number of constraints, the matrix transformation methods (MTM) are often more cost-effective. The paper presents a complete solution, with topological ordering, for this problem. Practical implications - A complete software package in Fortran 2003 is described. Examples of clique-based problems are shown with large systems solved in core. Social implications - More realistic non-linear problems can be solved with this Frontal code at the core of the Newton method. Originality/value - Use of topological ordering of constraints. A-priori pivot and front sequences. No need for symbolic assembling. Constraints treated at the core of the Frontal solver. Use of OpenMP in the main Frontal loop, now quantified. Availability of Software.
Resumo:
OBJECTIVE To describe the trend for malignant skin neoplasms in subjects under 40 years of age in a region with high ultraviolet radiation indices.METHODS A descriptive epidemiological study on melanoma and nonmelanoma skin cancers that was conducted in Goiania, Midwest Brazil, with 1,688 people under 40 years of age, between 1988 and 2009. Cases were obtained fromRegistro de Câncer de Base Populacional de Goiânia(Goiania’s Population-Based Cancer File). Frequency, trends, and incidence of cases with single and multiple lesions were analyzed; transplants and genetic skin diseases were found in cases with multiple lesions.RESULTS Over the period, 1,995 skin cancer cases were observed to found, of which 1,524 (90.3%) cases had single lesions and 164 (9.7%) had multiple lesions. Regarding single lesions, incidence on men was observed to have risen from 2.4 to 3.1/100,000 inhabitants; it differed significantly for women, shifting from 2.3 to 5.3/100,000 (Annual percentage change – [APC] 3.0%, p = 0.006). Regarding multiple lesions, incidence on men was observed to have risen from 0.30 to 0.98/100,000 inhabitants; for women, it rose from 0.43 to 1.16/100,000 (APC 8.6%, p = 0.003). Genetic skin diseases or transplants were found to have been correlated with 10.0% of cases with multiple lesions – an average of 5.1 lesions per patient. The average was 2.5 in cases without that correlation.CONCLUSIONS Skin cancer on women under 40 years of age has been observed to be increasing for both cases with single and multiple lesions. It is not unusual to find multiple tumors in young people – in most cases, they are not associated with genetic skin diseases or transplants. It is necessary to avoid excessive exposure to ultraviolet radiation from childhood.
Resumo:
Liquid crystalline cellulosic-based solutions described by distinctive properties are at the origin of different kinds of multifunctional materials with unique characteristics. These solutions can form chiral nematic phases at rest, with tuneable photonic behavior, and exhibit a complex behavior associated with the onset of a network of director field defects under shear. Techniques, such as Nuclear Magnetic Resonance (NMR), Rheology coupled with NMR (Rheo-NMR), rheology, optical methods, Magnetic Resonance Imaging (MRI), Wide Angle X-rays Scattering (WAXS), were extensively used to enlighten the liquid crystalline characteristics of these cellulosic solutions. Cellulosic films produced by shear casting and fibers by electrospinning, from these liquid crystalline solutions, have regained wider attention due to recognition of their innovative properties associated to their biocompatibility. Electrospun membranes composed by helical and spiral shape fibers allow the achievement of large surface areas, leading to the improvement of the performance of this kind of systems. The moisture response, light modulated, wettability and the capability of orienting protein and cellulose crystals, opened a wide range of new applications to the shear casted films. Characterization by NMR, X-rays, tensile tests, AFM, and optical methods allowed detailed characterization of those soft cellulosic materials. In this work, special attention will be given to recent developments, including, among others, a moisture driven cellulosic motor and electro-optical devices.
Resumo:
We study the existence and multiplicity of positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation { -div(del upsilon/root 1-vertical bar del upsilon vertical bar(2)) in B-R, upsilon=0 on partial derivative B-R,B- where B-R is a ball in R-N (N >= 2). According to the behaviour off = f (r, s) near s = 0, we prove the existence of either one, two or three positive solutions. All results are obtained by reduction to an equivalent non-singular one-dimensional problem, to which variational methods can be applied in a standard way.
Resumo:
Mechanical Systems and Signal Processing, Vol.22, Number 6
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática.
Resumo:
In this article, physical layer awareness in access, core, and metro networks is addressed, and a Physical Layer Aware Network Architecture Framework for the Future Internet is presented and discussed, as proposed within the framework of the European ICT Project 4WARD. Current limitations and shortcomings of the Internet architecture are driving research trends at a global scale toward a novel, secure, and flexible architecture. This Future Internet architecture must allow for the co-existence and cooperation of multiple networks on common platforms, through the virtualization of network resources. Possible solutions embrace a full range of technologies, from fiber backbones to wireless access networks. The virtualization of physical networking resources will enhance the possibility of handling different profiles, while providing the impression of mutual isolation. This abstraction strategy implies the use of well elaborated mechanisms in order to deal with channel impairments and requirements, in both wireless (access) and optical (core) environments.