997 resultados para METAL NANOWIRES
Resumo:
This work reports on the fabrication of a superhydrophobic nylon textile based on the organic charge transfer complex CuTCNAQ (TCNAQ = 11,11,12,12-tetracyanoanthraquinodimethane). The nylon fabric that is metallized with copper undergoes a spontaneous chemical reaction with TCNAQ dissolved in acetonitrile to form nanorods of CuTCNAQ that are intertwined over the entire surface of the fabric. This creates the necessary micro and nanoscale roughness that is required for the Cassie-Baxter state thereby achieving a superhydrophobic/superoleophilic surface without the need for a fluorinated surface. The material is characterised with SEM, FT-IR and XPS spectroscopy and investigated for its ability to separate oil and water in two modes, namely under gravity and as an absorbent. It is found that the fabric can separate dichloromethane, olive oil and crude oil from water and in fact reduce the water content of the oil during the separation process. The fabric is reusable and tolerant to conditions such as seawater, hydrochloric acid and extensive time periods on the shelf. Given that CuTCNAQ is a copper based semiconductor may also open up the possibility of other applications in areas such as photocatalysis and antibacterial applications.
Resumo:
The thermal decomposition of sodium azide has been studied in the temperature range 240–360°C in vacuum and under pressure of an inert gas, argon. The results show that the decomposition is partial 360°C. From the observations made in the present work, namely: (i) the decomposition is incomplete both under vacuum and inert gas; (ii) mass spectrometric studies do not reveal any decrease in the intensity of the background species, CO+2, CO+, H2O+, and (iii) sodium metal remains in the ‘free state’ as seen by the formation of a metallic mirror at temperatures above 300°C, it has been argued that the partial nature of decompostion is due to the confinement of the decomposition to intermosaic regions within the lattice.
Resumo:
Abstract is not available.
Resumo:
Adsorption of oxygen on Ni, Cu, Pd, Ag, and Au surfaces has been investigated by employing UV and X-ray photoelectron spectrscopy as well as electron energy loss spectroscopy (EELS). Molecularly chemisorbed (singlet) oxygen is found on Ni, Cu, Ag, and Au surfaces showing features such as stabilization of the rB* orbital, destabilization of the .nu orbital, higher O(1s) binding energy than the atomic species, and a band 2-3 eV below the Fermi level due to metal d-O(2p)u* interaction. 0-0 and metal-oxygen stretching frequencies have been observed in EELS. Physical adsorption of O2 is found to occur on Pd and Ni surfaces, only at high exposures in the latter case. Physical adsorption and multilayer condensation of CO, on metal surfaces are distinguished by characteristic relaxation shifts in UPS as well as O(1s) binding energies. Adsorption of CO on a Ni surface covered with presorbed atomic oxygen gives rise to C02.
Resumo:
The electronic structure of sodium tungsten bronzes NaxWO3 is investigated by high-resolution angle-resolved photoemission spectroscopy (ARPES). The ARPES spectra measured in both insulating and metallic phases of NaxWO3 reveals the origin of metal-insulator transition (MIT) in sodium tungsten bronze system. It is found that in insulating NaxWO3 the states near the Fermi level (E-F) are localized due to the strong disorder caused by the random distribution of Na+ ions in WO3 lattice. Due to the presence of disorder and long-range Coulomb interaction of conduction electrons, a soft Coulomb gap arises, where the density of states vanishes exactly at E-F. In the metallic regime the states near E-F are populated and the Fermi level shifts upward rigidly with increasing electron doping (x). Volume of electron-like Fermi surface (FS) at the Gamma(X) point of the Brillouin zone gradually increases with increasing Na concentration due to W 5d t(2g) band filling. A rigid shift of the Fermi energy is found to give a qualitatively good description of the Fermi surface evolution. As we move from bulk-sensitive to more surface sensitive photon energy, we found the emergence of Fermi surfaces at X(M) and M(R) point similar to the one at the Gamma(X) point in the metallic regime, suggesting that the reconstruction of surface was due to rotation/deformation of WO6 octahedra.
Resumo:
Ternary 3d-metal complexes of formulation [M(Tp(Ph))(py-nap)](ClO4)(1-3), where M is Co(II) (1), Cu(II) (2), and Zn(II) (3); Tp(Ph) is anionic tris (3-phenylpyrazolyl)borate; and py-nap is a pyridyl ligand with a conjugated 1,8-naphthalimide moiety, have been prepared from the reaction of metal perchlorate with KTp(Ph) and py-nap in CH2Cl2. The complexes have been characterized from analytical and physicochemical data. The complexes are stable in solution as evidenced from the electrospray ionization mass spectrometry data. The complexes show good binding propensity with calf thymus (CT) DNA, giving binding constant (K-b) values of similar to 10(5) M-1 and a molecular ``light-switch'' effect that results in an enhancement of the emission intensity of the naphthalimide chromophore on binding to CT DNA. The complexes do not show any hydrolytic cleavage of DNA. They show poor chemical nuclease activity in the presence of 3-mercaptopropionic acid or hydrogen peroxide (H2O2). The Co(II) and Cu(II) complexes exhibit oxidative pUC19 DNA cleavage activity in UV-A light of 365 rim. The Zn(II) complex shows moderate DNA photocleavage activity at 365 nm. The Cu(II)complex 2 displays photoinduced DNA cleavage activity in red light of 647.1 nm and 676 rim and near-IR light of >750 rim. A mechanistic studyin UV-A and visible light suggests the involvement of the hydroxyl radical as the reactive species in the DNA photocleavage reactions. The complexes also show good bovine serum albumin (BSA) protein binding propensity, giving K-BSA values of similar to 10(5) M-1. Complexes 1 and 2 display significant photoinduced BSA cleavage activity in UV-A light. The Co(II) complex 1 shows a significant photocytotoxic effect in HeLa cervical cancer cells on exposure to UV-A light of 365 nm, giving an IC50 value of 32 mu M. The IC50 value for the py-nap ligand alone is 41.42 mu m in UV-A light. The IC50 value is >200 mu M in the dark, indicating poor dark toxicity of 1. The Cu(II) complex 2 exhibits moderate photocytotoxicity and significant dark toxicity, giving IC50 values of 18.6 mu m and 29.7 mu m in UV-A light and in the dark, respectively.
Resumo:
Heavy metals build-up on urban road surfaces is a complex process and influenced by a diverse range of factors. Although numerous research studies have been conducted in the area of heavy metals build-up, limited research has been undertaken to rank these factors in terms of their influence on the build-up process. This results in limitations in the identification of the most critical factor/s for accurately estimating heavy metal loads and for designing effective stormwater treatment measures. The research study undertook an in-depth analysis of the factors which influence heavy metals build-up based on data generated from a number of different geographical locations around the world. Traffic volume was found to be the highest ranked factor in terms of influencing heavy metals build-up while land use was ranked the second. Proximity to arterial roads, antecedent dry days and road surface roughness has a relatively lower ranking. Furthermore, the study outcomes advances the conceptual understanding of heavy metals build-up based on the finding that with increasing traffic volume, total heavy metal build-up load increases while the variability decreases. The outcomes from this research study are expected to contribute to more accurate estimation of heavy metals build-up loads leading to more effective stormwater treatment design.
Resumo:
Uncertainty inherent to heavy metal build-up and wash-off stems from process variability. This results in inaccurate interpretation of stormwater quality model predictions. The research study has characterised the variability in heavy metal build-up and wash-off processes based on the temporal variations in particle-bound heavy metals commonly found on urban roads. The study outcomes found that the distribution of Al, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb were consistent over particle size fractions <150µm and >150µm, with most metals concentrated in the particle size fraction <150µm. When build-up and wash-off are considered as independent processes, the temporal variations in these processes in relation to the heavy metals load are consistent with variations in the particulate load. However, the temporal variations in the load in build-up and wash-off of heavy metals and particulates are not consistent for consecutive build-up and wash-off events that occur on a continuous timeline. These inconsistencies are attributed to interactions between heavy metals and particulates <150µm and >150µm, which are influenced by particle characteristics such as organic matter content. The behavioural variability of particles determines the variations in the heavy metals load entrained in stormwater runoff. Accordingly, the variability in build-up and wash-off of particle-bound pollutants needs to be characterised in the description of pollutant attachment to particulates in stormwater quality modelling. This will ensure the accounting of process uncertainty, and thereby enhancing the interpretation of the outcomes derived from modelling studies.
Resumo:
Abstract is not available.
Resumo:
The complexes of monothiobiuret with Co(II), Ni(II), Cd(II) and Hg(II) chlorides are investigated. The ligand is suggested to be unidentate bonding through sulfur in Co(II) and Hg(II) complexes and bidentate bonding through both sulfur and oxygen atoms in the other two complexes.
Resumo:
The behavior of the chelate, ferric dipivaloylmethide, Fe(DPM)3, in vinyl polymerization systems was investigated. The polymerization was found to be of free-radical nature. The rate of polymerization was proportional to the square root of the concentration of the chelate. The monomer exponent was close to 1.5 for the Fe(DPM)3-initiated polymerization of styrene and methyl methacrylate. The kinetic and transfer constants and activation energies for these systems have been evaluated. Spectral studies revealed the possibility of a complex formation between the chelate and the monomer. A kinetic scheme for the Fe(DPM)3-initiated polymerization is derived based on this initial complex formation.
Resumo:
The nature of the interaction between the unsaturated monomer and the chelate, Fe(DPM)3, is studied in detail. The interaction is found to occur only in solution. The stoichiometry of interaction and the equilibrium constant are evaluated. With the help of spectral evidence, attempts are made to point out the specific sites of interaction.
Resumo:
Recently, a novel stress-induced phase transformation in an initial < 100 >/{100} B2-CuZr nanowire has been reported for the first time [Sutrakar and Mahapatra, Mater. Lett. 63, 1289 (2009)]. Following this, a martenisitic phase transformation in Cu-Zr nanowire was shown [Cheng et al., Appl. Phys. Lett. 95, 021911 (2009)] using the same idea (Sutrakar and Mahapatra, Mater. Lett. 63, 1289 (2009)]. The pseudoelastic recovery of the bct phase of Cu-Zr by unloading has also been shown [Cheng et al., Appl. Phys. Lett. 95, 021911 (2009)]. They also tested the epitaxial bain path [Alippi et al., Phys. Rev. Lett. 78, 3892 (1997)] and reported that the bct phase in the nanowire is metastable, whereas the bulk counterpart is unstable. This aspect is re-examined in this comment with corrected results.
Resumo:
The effect of pH and metal ions (Cu2+, Zn2+, Cd2+, Mn2+, Cr3+, Co3+, and Mg2+) on the decyclization reactions of pyridoxal-histamine cyclized Schiff base has been studied using electronic spectroscopy. The study reveals that the cyclization reaction is irreversible with respect to pH and metal ions. Interest in this work derives from the possible involvement of cyclization reactions in the inhibitory activity of a number of pyridoxal-dependent enzymes.