986 resultados para MEAN-FIELD THEORY
Resumo:
We argue that low-temperature effects in QED can, if anywhere, only be quantitatively interesting for bound electrons. Unluckily the dominant thermal contribution turns out to be level independent, so that it does not affect the frequency of the transition radiation.
Resumo:
An extension of the self-consistent field approach formulation by Cohen in the preceding paper is proposed in order to include the most general kind of two-body interactions, i.e., interactions depending on position, momenta, spin, isotopic spin, etc. The dielectric function is replaced by a dielectric matrix. The evaluation of the energies involves the computation of a matrix inversion and trace.
Resumo:
We develop an efficient technique to compute anomalies in supersymmetric theories by combining the so-called nonlocal regularization method and superspace techniques. To illustrate the method we apply it to a four-dimensional toy model with potentially anomalous N=1 supersymmetry and prove explicitly that in this model all the candidate supersymmetry anomalies have vanishing coefficients at the one-loop level.
Resumo:
Exact solutions of the classical equations corresponding to the leading-logarithm approximation are obtained. They are classified by an (integer) topological number.
Resumo:
In this paper we examine in detail the implementation, with its associated difficulties, of the Killing conditions and gauge fixing into the variational principle formulation of Bianchi-type cosmologies. We address problems raised in the literature concerning the Lagrangian and the Hamiltonian formulations: We prove their equivalence, make clear the role of the homogeneity preserving diffeomorphisms in the phase space approach, and show that the number of physical degrees of freedom is the same in the Hamiltonian and Lagrangian formulations. Residual gauge transformations play an important role in our approach, and we suggest that Poincaré transformations for special relativistic systems can be understood as residual gauge transformations. In the Appendixes, we give the general computation of the equations of motion and the Lagrangian for any Bianchi-type vacuum metric and for spatially homogeneous Maxwell fields in a nondynamical background (with zero currents). We also illustrate our counting of degrees of freedom in an appendix.
Resumo:
We discuss reality conditions and the relation between spacetime diffeomorphisms and gauge transformations in Ashtekars complex formulation of general relativity. We produce a general theoretical framework for the stabilization algorithm for the reality conditions, which is different from Diracs method of stabilization of constraints. We solve the problem of the projectability of the diffeomorphism transformations from configuration-velocity space to phase space, linking them to the reality conditions. We construct the complete set of canonical generators of the gauge group in the phase space which includes all the gauge variables. This result proves that the canonical formalism has all the gauge structure of the Lagrangian theory, including the time diffeomorphisms.
Resumo:
The part proportional to the Euler-Poincar characteristic of the contribution of spin-2 fields to the gravitational trace anomaly is computed. It is seen to be of the same sign as all the lower-spin contributions, making anomaly cancellation impossible. Subtleties related to Weyl invariance, gauge independence, ghosts, and counting of degrees of freedom are pointed out.