988 resultados para MEAN VECTOR
Resumo:
Consider a sequence of closed, orientable surfaces of fixed genus g in a Riemannian manifold M with uniform upper bounds on the norm of mean curvature and area. We show that on passing to a subsequence, we can choose parametrisations of the surfaces by inclusion maps from a fixed surface of the same genus so that the distance functions corresponding to the pullback metrics converge to a pseudo-metric and the inclusion maps converge to a Lipschitz map. We show further that the limiting pseudo-metric has fractal dimension two. As a corollary, we obtain a purely geometric result. Namely, we show that bounds on the mean curvature, area and genus of a surface F subset of M, together with bounds on the geometry of M, give an upper bound on the diameter of F. Our proof is modelled on Gromov's compactness theorem for J-holomorphic curves.
Resumo:
We develop a model of the solar dynamo in which, on the one hand, we follow the Babcock-Leighton approach to include surface processes, such as the production of poloidal field from the decay of active regions, and, on the other hand, we attempt to develop a mean field theory that can be studied in quantitative detail. One of the main challenges in developing such models is to treat the buoyant rise of the toroidal field and the production of poloidal field from it near the surface. A previous paper by Choudhuri, Schüssler, & Dikpati in 1995 did not incorporate buoyancy. We extend this model by two contrasting methods. In one method, we incorporate the generation of the poloidal field near the solar surface by Durney's procedure of double-ring eruption. In the second method, the poloidal field generation is treated by a positive α-effect concentrated near the solar surface coupled with an algorithm for handling buoyancy. The two methods are found to give qualitatively similar results.
Resumo:
We report an experimental study of a new type of turbulent flow that is driven purely by buoyancy. The flow is due to an unstable density difference, created using brine and water, across the ends of a long (length/diameter=9) vertical pipe. The Schmidt number Sc is 670, and the Rayleigh number (Ra) based on the density gradient and diameter is about 108. Under these conditions the convection is turbulent, and the time-averaged velocity at any point is ‘zero’. The Reynolds number based on the Taylor microscale, Reλ, is about 65. The pipe is long enough for there to be an axially homogeneous region, with a linear density gradient, about 6–7 diameters long in the midlength of the pipe. In the absence of a mean flow and, therefore, mean shear, turbulence is sustained just by buoyancy. The flow can be thus considered to be an axially homogeneous turbulent natural convection driven by a constant (unstable) density gradient. We characterize the flow using flow visualization and particle image velocimetry (PIV). Measurements show that the mean velocities and the Reynolds shear stresses are zero across the cross-section; the root mean squared (r.m.s.) of the vertical velocity is larger than those of the lateral velocities (by about one and half times at the pipe axis). We identify some features of the turbulent flow using velocity correlation maps and the probability density functions of velocities and velocity differences. The flow away from the wall, affected mainly by buoyancy, consists of vertically moving fluid masses continually colliding and interacting, while the flow near the wall appears similar to that in wall-bound shear-free turbulence. The turbulence is anisotropic, with the anisotropy increasing to large values as the wall is approached. A mixing length model with the diameter of the pipe as the length scale predicts well the scalings for velocity fluctuations and the flux. This model implies that the Nusselt number would scale as Ra1/2Sc1/2, and the Reynolds number would scale as Ra1/2Sc−1/2. The velocity and the flux measurements appear to be consistent with the Ra1/2 scaling, although it must be pointed out that the Rayleigh number range was less than 10. The Schmidt number was not varied to check the Sc scaling. The fluxes and the Reynolds numbers obtained in the present configuration are much higher compared to what would be obtained in Rayleigh–Bénard (R–B) convection for similar density differences.
Resumo:
A new topology of asymmetric cascaded H-Bridge inverter is presented in this paper It consists of two cascaded H-bridge cells per phase. They are fed from isolated dc sources having a dc bus ratio of 1:0.366. Out of many space vectors possible from this circuit, only those are chosen that lie on 12-sided polygons. Thus, the overall space vector diagram produced by this circuit consists of multiple numbers of 12-sided polygons. With a proper PWM timing calculations based on these selected space vectors, it is possible to eliminate all the 6n +/- 1, (n = odd) harmonics from the phase voltage under all operating conditions. The switching frequency of individual H-Bridge cells is also substantially low. Extensive experimental results have been presented in this paper to validate the proposed concept.
Resumo:
In this paper, an approach to enhance the Extra High Voltage (EHV) Transmission system distance protection is presented. The scheme depends on the apparent impedance seen by the distance relay during the disturbance. In a distance relay,the impedance seen at the relay location is calculated from the fundamental frequency component of the voltage and current signals. Support Vector Machines (SVMs) are a new learning-byexample are employed in discriminating zone settings (Zone-1,Zone-2 and Zone-3) using the signals to be used by the relay.Studies on 265-bus system, an equivalent of practical Indian Western grid are presented for illustrating the proposed scheme.
Resumo:
With extensive use of dynamic voltage scaling (DVS) there is increasing need for voltage scalable models. Similarly, leakage being very sensitive to temperature motivates the need for a temperature scalable model as well. We characterize standard cell libraries for statistical leakage analysis based on models for transistor stacks. Modeling stacks has the advantage of using a single model across many gates there by reducing the number of models that need to be characterized. Our experiments on 15 different gates show that we needed only 23 models to predict the leakage across 126 input vector combinations. We investigate the use of neural networks for the combined PVT model, for the stacks, which can capture the effect of inter die, intra gate variations, supply voltage(0.6-1.2 V) and temperature (0 - 100degC) on leakage. Results show that neural network based stack models can predict the PDF of leakage current across supply voltage and temperature accurately with the average error in mean being less than 2% and that in standard deviation being less than 5% across a range of voltage, temperature.
Resumo:
In this paper, reduced level of rock at Bangalore, India is arrived from the 652 boreholes data in the area covering 220 sq.km. In the context of prediction of reduced level of rock in the subsurface of Bangalore and to study the spatial variability of the rock depth, ordinary kriging and Support Vector Machine (SVM) models have been developed. In ordinary kriging, the knowledge of the semivariogram of the reduced level of rock from 652 points in Bangalore is used to predict the reduced level of rock at any point in the subsurface of Bangalore, where field measurements are not available. A cross validation (Q1 and Q2) analysis is also done for the developed ordinary kriging model. The SVM is a novel type of learning machine based on statistical learning theory, uses regression technique by introducing e-insensitive loss function has been used to predict the reduced level of rock from a large set of data. A comparison between ordinary kriging and SVM model demonstrates that the SVM is superior to ordinary kriging in predicting rock depth.
Resumo:
Vehicular ad hoc network (VANET) applications are principally categorized into safety and commercial applications. Efficient traffic management for routing an emergency vehicle is of paramount importance in safety applications of VANETs. In the first case, a typical example of a high dense urban scenario is considered to demonstrate the role of penetration ratio for achieving reduced travel time between source and destination points. The major requirement for testing these VANET applications is a realistic simulation approach which would justify the results prior to actual deployment. A Traffic Simulator coupled with a Network Simulator using a feedback loop feature is apt for realistic simulation of VANETs. Thus, in this paper, we develop the safety application using traffic control interface (TraCI), which couples SUMO (traffic simulator) and NS2 (network simulator). Likewise, the mean throughput is one of the necessary performance measures for commercial applications of VANETs. In the next case, commercial applications have been considered wherein the data is transferred amongst vehicles (V2V) and between roadside infrastructure and vehicles (I2V), for which the throughput is assessed.
Resumo:
Communication applications are usually delay restricted, especially for the instance of musicians playing over the Internet. This requires a one-way delay of maximum 25 msec and also a high audio quality is desired at feasible bit rates. The ultra low delay (ULD) audio coding structure is well suited to this application and we investigate further the application of multistage vector quantization (MSVQ) to reach a bit rate range below 64 Kb/s, in a scalable manner. Results at 32 Kb/s and 64 Kb/s show that the trained codebook MSVQ performs best, better than KLT normalization followed by a simulated Gaussian MSVQ or simulated Gaussian MSVQ alone. The results also show that there is only a weak dependence on the training data, and that we indeed converge to the perceptual quality of our previous ULD coder at 64 Kb/s.
Resumo:
This paper presents the topology selection, design steps, simulation studies, design verification, system fabrication and performance evaluation on an induction motor based dynamometer system. The control algorithm used the application is well known field oriented control or vector control. Position sensorless scheme is adopted to eliminate the encoder requirement. The dynamometer is rated for 3.7kW. It can be used to determine the speed–torque characteristics of any rotating system. The rotating system is to be coupled with the vector controlled drive and the required torque command is given from the latter. The experimental verification is carried out for an open loop v/f drive as a test rotating system and important test results are presented.
Resumo:
We propose a randomized algorithm for large scale SVM learning which solves the problem by iterating over random subsets of the data. Crucial to the algorithm for scalability is the size of the subsets chosen. In the context of text classification we show that, by using ideas from random projections, a sample size of O(log n) can be used to obtain a solution which is close to the optimal with a high probability. Experiments done on synthetic and real life data sets demonstrate that the algorithm scales up SVM learners, without loss in accuracy. 1
Resumo:
Even though several techniques have been proposed in the literature for achieving multiclass classification using Support Vector Machine(SVM), the scalability aspect of these approaches to handle large data sets still needs much of exploration. Core Vector Machine(CVM) is a technique for scaling up a two class SVM to handle large data sets. In this paper we propose a Multiclass Core Vector Machine(MCVM). Here we formulate the multiclass SVM problem as a Quadratic Programming(QP) problem defining an SVM with vector valued output. This QP problem is then solved using the CVM technique to achieve scalability to handle large data sets. Experiments done with several large synthetic and real world data sets show that the proposed MCVM technique gives good generalization performance as that of SVM at a much lesser computational expense. Further, it is observed that MCVM scales well with the size of the data set.
Resumo:
Support Vector Clustering has gained reasonable attention from the researchers in exploratory data analysis due to firm theoretical foundation in statistical learning theory. Hard Partitioning of the data set achieved by support vector clustering may not be acceptable in real world scenarios. Rough Support Vector Clustering is an extension of Support Vector Clustering to attain a soft partitioning of the data set. But the Quadratic Programming Problem involved in Rough Support Vector Clustering makes it computationally expensive to handle large datasets. In this paper, we propose Rough Core Vector Clustering algorithm which is a computationally efficient realization of Rough Support Vector Clustering. Here Rough Support Vector Clustering problem is formulated using an approximate Minimum Enclosing Ball problem and is solved using an approximate Minimum Enclosing Ball finding algorithm. Experiments done with several Large Multi class datasets such as Forest cover type, and other Multi class datasets taken from LIBSVM page shows that the proposed strategy is efficient, finds meaningful soft cluster abstractions which provide a superior generalization performance than the SVM classifier.