967 resultados para Lymphocytes T CD8
Resumo:
Objective: Immunosenescence and cognitive decline are common markers of the aging process. Taking into consideration the heterogeneity observed in aging processes and the recently described link between lymphocytes and cognition, we herein explored the possibility of an association between alterations in lymphocytic populations and cognitive performance. Methods: In a cohort of cognitively healthy adults (n = 114), previously characterized by diverse neurocognitive/psychological performance patterns, detailed peripheral blood immunophenotyping of both the innate and adaptive immune systems was performed by flow cytometry. Results: Better cognitive performance was associated with lower numbers of effector memory CD4(+) T cells and higher numbers of naive CD8(+) T cells and B cells. Furthermore, effector memory CD4(+) T cells were found to be predictors of general and executive function and memory, even when factors known to influence cognitive performance in older individuals (e.g., age, sex, education, and mood) were taken into account. Conclusions: This is the first study in humans associating specific phenotypes of the immune system with distinct cognitive performance in healthy aging.
Resumo:
The immune system can recognize virtually any antigen, yet T cell responses against several pathogens, including Mycobacterium tuberculosis, are restricted to a limited number of immunodominant epitopes. The host factors that affect immunodominance are incompletely understood. Whether immunodominant epitopes elicit protective CD8+ T cell responses or instead act as decoys to subvert immunity and allow pathogens to establish chronic infection is unknown. Here we show that anatomically distinct human granulomas contain clonally expanded CD8+ T cells with overlapping T cell receptor (TCR) repertoires. Similarly, the murine CD8+ T cell response against M. tuberculosis is dominated by TB10.44-11-specific T cells with extreme TCRß bias. Using a retro genic model of TB10.44-11-specific CD8+ Tcells, we show that TCR dominance can arise because of competition between clonotypes driven by differences in affinity. Finally, we demonstrate that TB10.4-specific CD8+ T cells mediate protection against tuberculosis, which requires interferon-? production and TAP1-dependent antigen presentation in vivo. Our study of how immunodominance, biased TCR repertoires, and protection are inter-related, provides a new way to measure the quality of T cell immunity, which if applied to vaccine evaluation, could enhance our understanding of how to elicit protective T cell immunity.
Resumo:
We sought to verify the prevalence of lymphocytic thyroiditis (LT) and Hashimoto's thyroiditis (HT) in autopsy materials. Cases examined between 2003 and 2007 at the Department of Pathology of Faculty of Medicine of São Paulo University were studied. Immunohistochemical analyses were conducted in selected cases to characterize the type of infiltrating mononuclear cells; in addition, we evaluated the frequency of apoptosis by TUNEL assay technique and caspase-3 immunostaining. Significant increase in overall thyroiditis frequency was observed in the present series when compared with the previous report (2.2978% vs. 0.0392%). Thyroiditis was more prevalent among older people. Selected cases of LT and HT (5 cases each) had their infiltrating lymphocytes characterized by immunohistochemical analyses. Both LT and HT showed similar immunostaining patterns for CD4, CD8, CD68, thus supporting a common pathophysiology mechanism and indicating that LT and HT should be considered different presentations of a same condition, that is, autoimmune thyroiditis. Moreover, apoptosis markers strongly evidenced that apoptosis was present in all studied cases. Our results demonstrated an impressive increase in the prevalence of thyroiditis during recent years and our data support that the terminology of autoimmune thyroiditis should be used to designate both LT and HT. This classification would facilitate comparison of prevalence data from different series and studies.
Resumo:
Background: To alert for the diagnosis of the 22q11.2 deletion syndrome (22q11.2DS) in patients with congenital heart disease (CHD). Objective: To describe the main CHDs, as well as phenotypic, metabolic and immunological findings in a series of 60 patients diagnosed with 22q11.2DS. Methods: The study included 60 patients with 22q11.2DS evaluated between 2007 and 2013 (M:F=1.3, age range 14 days to 20 years and 3 months) at a pediatric reference center for primary immunodeficiencies. The diagnosis was established by detection of the 22q11.2 microdeletion using FISH (n = 18) and/or MLPA (n = 42), in association with clinical and laboratory information. Associated CHDs, progression of phenotypic facial features, hypocalcemia and immunological changes were analyzed. Results: CHDs were detected in 77% of the patients and the most frequent type was tetralogy of Fallot (38.3%). Surgical correction of CHD was performed in 34 patients. Craniofacial dysmorphisms were detected in 41 patients: elongated face (60%) and/or elongated nose (53.3%), narrow palpebral fissure (50%), dysplastic, overfolded ears (48.3%), thin lips (41.6%), elongated fingers (38.3%) and short stature (36.6%). Hypocalcemia was detected in 64.2% and decreased parathyroid hormone (PTH) level in 25.9%. Decrease in total lymphocytes, CD4 and CD8 counts were present in 40%, 53.3% and 33.3%, respectively. Hypogammaglobulinemia was detected in one patient and decreased concentrations of immunoglobulin M (IgM) in two other patients. Conclusion: Suspicion for 22q11.2DS should be raised in all patients with CHD associated with hypocalcemia and/or facial dysmorphisms, considering that many of these changes may evolve with age. The 22q11.2 microdeletion should be confirmed by molecular testing in all patients.
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2009
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2010
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2014
Resumo:
The megaesophagus and megacolon endemic in South America are related , to Chagas' disease. These mega conditions are found in patients with chronic Chagas's infection, when the parasite is not demonstrable in the lesions. These are characterized by depopulation of parasympathetic ganglion cells, dilation and hypertrophy of the viscera. In the experiments described here we deminstrate a selective affinity and adherence of Trypanosoma cruzi-immune lymphocytes to myenteric, parasympathetic ganglion cells, leading to neuronolysis. None of these features are observed when non-immune lymphocytes from control rabbits are used, or when the immune lymphocytes are allowed to react with CNS neurons. This demonstration is an indication of the high degree of specificity of the destruction of parasympathetic neurons in Chagas' disease. We postulate that the T. cruzi-immune lymphocyte rejection of parasympathetic neurons, but not of CNS neurons, might be related to recognition of a cross-reacting antigenic determinant secreted only by the target neurons. In favor of this interpretation is the observation of lymphocytic infiltrates and parasympathetic ganglion cell destruction in chronic Chagas' infection in the absence of encephalitis.
Resumo:
HLA-A2+ melanoma patients develop naturally a strong CD8+ T cell response to a self-peptide derived from Melan-A. Here, we have used HLA-A2/peptide tetramers to isolate Melan-A-specific T cells from tumor-infiltrated lymph nodes of two HLA-A2+ melanoma patients and analyzed their TCR beta chain V segment and complementarity determining region 3 length and sequence. We found a broad diversity in Melan-A-specific immune T-cell receptor (TCR) repertoires in terms of both TCR beta chain variable gene segment usage and clonal composition. In addition, immune TCR repertoires selected in the patients were not overlapping. In contrast to previously characterized CD8+ T-cell responses to viral infections, this study provides evidence against usage of highly restricted TCR repertoire in the natural response to a self-differentiation tumor antigen.
Resumo:
The RP protein (RPP) array approach immobilizes minute amounts of cell lysates or tissue protein extracts as distinct microspots on NC-coated slide. Subsequent detection with specific antibodies allows multiplexed quantification of proteins and their modifications at a scale that is beyond what traditional techniques can achieve. Cellular functions are the result of the coordinated action of signaling proteins assembled in macromolecular complexes. These signaling complexes are highly dynamic structures that change their composition with time and space to adapt to cell environment. Their comprehensive analysis requires until now relatively large amounts of cells (>5 x 10(7)) due to their low abundance and breakdown during isolation procedure. In this study, we combined small scale affinity capture of the T-cell receptor (TCR) and RPP arrays to follow TCR signaling complex assembly in human ex vivo isolated CD4 T-cells. Using this strategy, we report specific recruitment of signaling components to the TCR complex upon T-cell activation in as few as 0.5 million of cells. Second- to fourth-order TCR interacting proteins were accurately quantified, making this strategy specially well-suited to the analysis of membrane-associated signaling complexes in limited amounts of cells or tissues, e.g., ex vivo isolated cells or clinical specimens.
Resumo:
Adaptive immunity is initiated in T-cell zones of secondary lymphoid organs. These zones are organized in a rigid 3D network of fibroblastic reticular cells (FRCs) that are a rich cytokine source. In response to lymph-borne antigens, draining lymph nodes (LNs) expand several folds in size, but the fate and role of the FRC network during immune response is not fully understood. Here we show that T-cell responses are accompanied by the rapid activation and growth of FRCs, leading to an expanded but similarly organized network of T-zone FRCs that maintains its vital function for lymphocyte trafficking and survival. In addition, new FRC-rich environments were observed in the expanded medullary cords. FRCs are activated within hours after the onset of inflammation in the periphery. Surprisingly, FRC expansion depends mainly on trapping of naïve lymphocytes that is induced by both migratory and resident dendritic cells. Inflammatory signals are not required as homeostatic T-cell proliferation was sufficient to trigger FRC expansion. Activated lymphocytes are also dispensable for this process, but can enhance the later growth phase. Thus, this study documents the surprising plasticity as well as the complex regulation of FRC networks allowing the rapid LN hyperplasia that is critical for mounting efficient adaptive immunity.
Resumo:
The immunoloical profile of acquired immunodeficiency syndrome (AIDS) and chronic lymphadenopathy syndrome (CLAS) in 15 and 11 Brazilian patients, respectively, was studied. The AIDS patients showed reduced percentage of total T (CD3) and T-helper-inducer (CD4) lymphocytes, relative increase in numbers of T-suppressor-cytotoxic (CD8) cells and a marked inversion of T-helper-inducer/suppressor-cytotoxic (CD4/CD8) ratio. Lymphoproliferative responses to PHA, ConA, PPD and PWM were diminished. Hypergamaglobulinemia and high levels of circulating immune complexes were also found. The CLAS patients also showed important immunological alterations, but not so intense as those with AIDS. These data seems to be similar to those observed in other parts of the world.
Resumo:
Novel cancer vaccines are capableto efficiently induce and boost humantumor antigen specific T-cells. However,the properties of these CD8T-cells are only partially characterized.For in depth investigation ofT-cells following Melan-A/MART-1peptide vaccination in melanoma patients,we conducted a detailed prospectivestudy at the single cell level.We first sorted individual human naiveand effector CD8 T-cells from peripheralblood by flow cytometry, andtested a modified RT-PCR protocolincluding a global amplification ofexpressed mRNAs to obtain sufficientcDNAfromsingle cells.We successfullydetected the expression ofseveral specific genes of interest evendown to 106-fold dilution (equivalentto 10-5 cell). We then analyzed tumor-specific effector memory (EM)CD8T-cell subpopulations ex vivo, assingle cells from vaccinated melanomapatients. To elucidate the hallmarksof effective immunity the genesignatures were defined by a panel ofgenes related to effector functions(e.g. IFN-, granzyme B, perforin),and individual clonotypes were identifiedaccording to the expression ofdistinct T-cell receptors (TCR). Usingthis novel single cell analysis approach,we observed that T-cell differentiationis clonotype dependent,with a progressive restriction in TCRBV clonotype diversity from EMCD28pos to EMCD28neg subsets. However,the effector function gene imprintingis clonotype-independent,but dependent on differentiation,since it correlates with the subset oforigin (EMCD28pos or EMCD28neg). We also conducted a detailedcomparative analysis after vaccinationwith natural vs. analog Melan-Apeptide. We found that the peptideused for vaccination determines thefunctional outcome of individualT-cell clonotypes, with native peptideinducing more potent effector functions.Yet, selective clonotypic expansionwith differentiation was preservedregardless of the peptide usedfor vaccination. In summary, the exvivo single cell RT-PCR approach ishighly sensitive and efficient, andrepresents a reliable and powerfultool to refine our current view of molecularprocesses taking place duringT-cell differentiation.