919 resultados para Low energy ion scattering
Resumo:
In LS coupling, the energy expressions of H-e(fd) of the chief low-energy levels of 4f(N-15)d (n < 9) configuration ions are calculated. H-e(fd) can be parameterized with F-K (k=2,4) and G(K)(k=1,3,5). f(k) and g(k), which are coefficients, times the corresponding parameter FK and GK leads to the energy expressions of H-e(fd).
Resumo:
Studies of low-energy collision-induced dissociation and isotopic labeling on ionized tetrahydroimidazole-substituted methylene P-diketones by tandem mass spectrometry showed that their unimolecular fragmentations may involve the reactions of intermediate ion/neutral complexes and multistep rearrangements. The corresponding mechanisms were proved by semiemipirical calculations of PM3 and AM1 methods.
Resumo:
The low energy collision-induced dissociation, linked scan techniques and isotopic labeling experiment were used to investigate the unimolecular fragmentation of protonated N-hydroxyphthalimide under electron impact and chemical ionization conditions. It was found that this compound shows an unusual reactivity towards protonation. Two possible sites of protonation have been proposed to explain the corresponding fragmentation processes, one is that the protonation takes place on the oxygen atom of hydroxyl group, resulting in the loss of water and the other is the formation of an intermediary proton-bound complex in the fragmentation process, giving rise to the fragment ions of m/z 133 and m/z 135. The results show both cases are coexistence in the fragmentations of protonated N-hydroxyphthalimide, and the unimolecular fragmentation pathways are available.
Resumo:
Copper phthalocyanine on InSb(111)A?interface bonding, growth mode and energy band alignment, D.A. Evans, H.J. Steiner, S. Evans, R. Middleton, T.S. Jones, S. Park, T.U. Kampen, D.R.T. Zahn, G. Cabailh and I.T. McGovern, J. Phys.: Condens. Matter, 15, S2729?S2740, (2003)
Resumo:
Wireless sensor networks (WSN) are becoming widely adopted for many applications including complicated tasks like building energy management. However, one major concern for WSN technologies is the short lifetime and high maintenance cost due to the limited battery energy. One of the solutions is to scavenge ambient energy, which is then rectified to power the WSN. The objective of this thesis was to investigate the feasibility of an ultra-low energy consumption power management system suitable for harvesting sub-mW photovoltaic and thermoelectric energy to power WSNs. To achieve this goal, energy harvesting system architectures have been analyzed. Detailed analysis of energy storage units (ESU) have led to an innovative ESU solution for the target applications. Battery-less, long-lifetime ESU and its associated power management circuitry, including fast-charge circuit, self-start circuit, output voltage regulation circuit and hybrid ESU, using a combination of super-capacitor and thin film battery, were developed to achieve continuous operation of energy harvester. Low start-up voltage DC/DC converters have been developed for 1mW level thermoelectric energy harvesting. The novel method of altering thermoelectric generator (TEG) configuration in order to match impedance has been verified in this work. Novel maximum power point tracking (MPPT) circuits, exploring the fractional open circuit voltage method, were particularly developed to suit the sub-1mW photovoltaic energy harvesting applications. The MPPT energy model has been developed and verified against both SPICE simulation and implemented prototypes. Both indoor light and thermoelectric energy harvesting methods proposed in this thesis have been implemented into prototype devices. The improved indoor light energy harvester prototype demonstrates 81% MPPT conversion efficiency with 0.5mW input power. This important improvement makes light energy harvesting from small energy sources (i.e. credit card size solar panel in 500lux indoor lighting conditions) a feasible approach. The 50mm × 54mm thermoelectric energy harvester prototype generates 0.95mW when placed on a 60oC heat source with 28% conversion efficiency. Both prototypes can be used to continuously power WSN for building energy management applications in typical office building environment. In addition to the hardware development, a comprehensive system energy model has been developed. This system energy model not only can be used to predict the available and consumed energy based on real-world ambient conditions, but also can be employed to optimize the system design and configuration. This energy model has been verified by indoor photovoltaic energy harvesting system prototypes in long-term deployed experiments.
Resumo:
Results are presented of high-resolution scattering experiments involving electron collisions with CO2 and CS2, between a few meV and 200 meV impact energy. Virtual state scattering is shown to dominate the low-energy behaviour for both species. The most striking features of the scattering spectrum for CS2 are, however, giant resonances with cross sections greater by more than an order of magnitude than those generally encountered in low-energy scattering. A strong feature centred at 15 meV is attributed to the involvement of CS2- and is interpreted to be a consequence of the virtual state effect.
Resumo:
We measured ejected electron spectra caused by autoionization of doubly excited states in He atoms; the excited He was made by double electron capture of low-energy He2+ ions colliding with Ba atoms. Measurements were performed by means of zero degree electron spectroscopy at projectile energies from 40 to 20 keV. Electron spectra due to autoionization from the states He(2lnl') to He+(1s) for n greater than or equal to2, and those from He(3lnl') to He+ (2s or 2p) for n greater than or equal to3, were observed. Line peaks in the spectra were identified by comparing observed electron spectra with those of several theoretical calculations. It was found that doubly excited states of relatively high angular momenta such as the D and F terms were conspicuously created in a quite different manner from the cases of the production of doubly excited states by the use of photon, electron, or ion impacts on neutral He atoms. Rydberg states with large n values were observed with high population in both the He(2lnl') and He(3lnl') series. Other remarkable features in the electron spectra are described and the mechanisms for the production of these electron spectra are discussed qualitatively.
Resumo:
The Gray Cancer Institute ultrasoft X-ray microprobe was used to quantify the bystander response of individual V79 cells exposed to a focused carbon K-shell (278 eV) X-ray beam. The ultrasoft X-ray microprobe is designed to precisely assess the biological response of individual cells irradiated in vitro with a very fine beam of low-energy photons. Characteristic C-K X rays are generated by a focused beam of 10 keV electrons striking a graphite target. Circular diffraction gratings (i.e. zone plates) are then employed to focus the X-ray beam into a spot with a radius of 0.25 mum at the sample position. Using this microbeam technology, the correlation between the irradiated cells and their nonirradiated neighbors can be examined critically. The survival response of V79 cells irradiated with a C-K X-ray beam was measured in the 0-2-Gy dose range. The response when all cells were irradiated was compared to that obtained when only a single cell was exposed. The cell survival data exhibit a linear-quadratic response when all cells were targeted (with evidence for hyper-sensitivity at low doses). When only a single cell was targeted within the population, 10% cell killing was measured. In contrast to the binary bystander behavior reported by many other investigations, the effect detected was initially dependent on dose (200 mGy). In the low-dose region (
Resumo:
The R-matrix method has proved to be a remarkably stable, robust and efficient technique for solving the close-coupling equations that arise in electron and photon collisions with atoms, ions and molecules. During the last thirty-four years a series of related R-matrix program packages have been published periodically in CPC. These packages are primarily concerned with low-energy scattering where the incident energy is insufficient to ionize the target. In this paper we describe previous term2DRMP,next term a suite of two-dimensional R-matrix propagation programs aimed at creating virtual experiments on high performance and grid architectures to enable the study of electron scattering from H-like atoms and ions at intermediate energies.
Resumo:
We study the process of low-energy electron capture by the SF(6) molecule. Our approach is based on the model of Gauyacq and Herzenberg [J. P. Gauyacq and A. Herzenberg, J. Phys. B 17, 1155 (1984)] in which the electron motion is coupled to the fully symmetric vibrational mode through a weakly bound or virtual s state. By tuning the two free parameters of the model, we achieve an accurate description of the measured electron attachment cross section and good agreement with vibrational excitation cross sections of the fully symmetric mode. An extension of the model provides a limit on the characteristic time of intramolecular vibrational relaxation in highly excited SF(6)(-). By evaluating the total vibrational spectrum density of SF(6)(-), we estimate the widths of the vibrational Feshbach resonances of the long-lived negative ion. We also analyze the possible distribution of the widths and its effect on the lifetime measurements, and investigate nonexponential decay features in metastable SF(6)(-).
Resumo:
This article presents an overview of current understanding of the interaction of low-energy positrons with molecules with emphasis on resonances, positron attachment, and annihilation. Measurements of annihilation rates resolved as a function of positron energy reveal the presence of vibrational Feshbach resonances (VFRs) for many polyatomic molecules. These resonances lead to strong enhancement of the annihilation rates. They also provide evidence that positrons bind to many molecular species. A quantitative theory of VFR-mediated attachment to small molecules is presented. It is tested successfully for selected molecule (e.g., methyl halides and methanol) where all modes couple to the positron continuum. Combination and overtone resonances are observed and their role is elucidated. Molecules that do not bind positrons and hence do not exhibit such resonances are discussed. In larger molecules, annihilation rates from VFR far exceed those explicable on the basis of single-mode resonances. These enhancements increase rapidly with the number of vibrational degrees of freedom, approximately as the fourth power of the number of atoms in the molecule. While the details are as yet unclear, intramolecular vibrational energy redistributio (IVR) to states that do not couple directly to the positron continuum appears to be responsible for these enhanced annihilation rates. In connection with IVR, experimental evidence indicates that inelastic positron escape channels are relatively rare. Downshifts of the VFR from the vibrational mode energies, obtained by measuring annihilate rates as a function of incident positron energy, have provided binding energies for 30 species. Their dependence upon molecular parameters and their relationship to positron-atom and positron-molecule binding-energy calculations are discussed. Feshbach resonances and positron binding to molecules are compared with the analogous electron-molecul (negative-ion) cases. The relationship of VFR-mediated annihilation to other phenomena such as Doppler broadening of the gamma-ray annihilation spectra, annihilation of thermalized positrons in gases, and annihilation-induced fragmentation of molecules is discussed. Possible areas for future theoretical and experimental investigation are also discussed.
Resumo:
Two techniques are described to calculate energy densities for the bell, gonad and oral arm tissues of three scyphozoan jellyfish (Cyanea capillata, Rhizostoma octopus and Chrysaora hysoscella). First, bomb-calorimetry was used, a technique that is readily available and inexpensive. However, the reliability of this technique for gelatinous material is contentious. Second, further analysis involving the more labour intensive proximate-composition analysis (protein, fat and carbohydrate) was carried out on two species (C capillata and R. octopus). These proximate data were subsequently converted to energy densities. The two techniques (bomb-calorimetry and proximate-composition) gave very similar estimates of energy density. Differences in energy density were found both amongst different species and between different tissues of the same species. Mean ( +/- S.D.) energy density estimates for whole animals from bomb-calorimetry were 0.18 +/- 0.05, 0.11 +/- 0.04, and 0.10 +/- 0.03 kJ g wet mass(-1) for C. capillata, R. octopus, and C. hysoscella respectively. The implications of these low energy densities for species feeding on jellyfish are discussed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Electron attachment to nitroaromatic compound 2-nitro-m-xylene in gas phase has been performed utilizing a double focusing two sector mass spectrometer with high mass resolution (m/Delta m approximate to 2500). At low energy (below 20 eV), electron interactions with the neutral 2-nitro-m-xylene molecule reveal a very rich fragmentation pattern. A total of 60 fragment anions have been detected and the ion yield for all observed negative ions has been recorded as a function of the incident electron energy, among them a long lived (metastable) non-dissociated parent anion which is formed at energies near zero eV, and some ions observed at the mass numbers 26,42 and 121. Comparison of calculated isotopic patterns with measured ion yields for these fragment anions and their successors in the mass spectrum, allows the assignment of the chemical composition of these fragments as CN- (26 Da), CNO- (42 Da) and C8H9O- (121 Da). Electron attachment to 2-nitro-m-xylene leads to anion formation at four energy ranges. Between 0 eV and 2 eV only few product ions are formed. Between 4.6 eV and 6.1 eV all fragment anions are formed and for most of them the anion yield reaches its maximum value in this range. NO2- which is the most abundant product [M-H](-) and O- are the only fragments that exhibit a feature at 7.4eV, 8.1 eV and 7.9eV, respectively. About half of the fragment anions exhibit a broad, mostly low-intensity resonance between 9 eV and 10 eV. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The use of accelerators, with compute architectures different and distinct from the CPU, has become a new research frontier in high-performance computing over the past ?ve years. This paper is a case study on how the instruction-level parallelism offered by three accelerator technologies, FPGA, GPU and ClearSpeed, can be exploited in atomic physics. The algorithm studied is the evaluation of two electron integrals, using direct numerical quadrature, a task that arises in the study of intermediate energy electron scattering by hydrogen atoms. The results of our ‘productivity’ study show that while each accelerator is viable, there are considerable differences in the implementation strategies that must be followed on each.
Resumo:
Attachment of free, low-energy electrons to dinitrobenzene (DNB) in the gas phase leads to DNB as well as several fragment anions. DNB, (DNB-H), (DNB-NO), (DNB-2NO), and (DNB-NO2) are found to undergo metastable (unimolecular) dissociation. A rich pattern of resonances in the yield of these metastable reactions versus electron energy is observed; some resonances are highly isomer-specific. Most metastable reactions are accompanied by large average kinetic energy releases (KER) that range from 0.5 to 1.32 eV, typical of complex rearrangement reactions, but (1,3-DNB-H)(-) features a resonance with a KER of only 0.06 eV for loss of NO. (1,3-DNB-NO)(-) offers a rare example of a sequential metastable reaction, namely, loss of NO followed by loss of CO to yield C5H4O- with a large KER of 1.32 eV. The G4(MP2) method is applied to compute adiabatic electron affinities and reaction energies for several of the observed metastable channels. (C) 2010 American Institute of Physics. [doi:10.1063/1.3514931]