915 resultados para Logistic regression model
Resumo:
None of the current surveillance streams monitoring the presence of scrapie in Great Britain provide a comprehensive and unbiased estimate of the prevalence of the disease at the holding level. Previous work to estimate the under-ascertainment adjusted prevalence of scrapie in Great Britain applied multiple-list capture-recapture methods. The enforcement of new control measures on scrapie-affected holdings in 2004 has stopped the overlapping between surveillance sources and, hence, the application of multiple-list capture-recapture models. Alternative methods, still under the capture-recapture methodology, relying on repeated entries in one single list have been suggested in these situations. In this article, we apply one-list capture-recapture approaches to data held on the Scrapie Notifications Database to estimate the undetected population of scrapie-affected holdings with clinical disease in Great Britain for the years 2002, 2003, and 2004. For doing so, we develop a new diagnostic tool for indication of heterogeneity as well as a new understanding of the Zelterman and Chao's lower bound estimators to account for potential unobserved heterogeneity. We demonstrate that the Zelterman estimator can be viewed as a maximum likelihood estimator for a special, locally truncated Poisson likelihood equivalent to a binomial likelihood. This understanding allows the extension of the Zelterman approach by means of logistic regression to include observed heterogeneity in the form of covariates-in case studied here, the holding size and country of origin. Our results confirm the presence of substantial unobserved heterogeneity supporting the application of our two estimators. The total scrapie-affected holding population in Great Britain is around 300 holdings per year. None of the covariates appear to inform the model significantly.
Resumo:
In 2004 the National Household Survey (Pesquisa Nacional par Amostras de Domicilios - PNAD) estimated the prevalence of food and nutrition insecurity in Brazil. However, PNAD data cannot be disaggregated at the municipal level. The objective of this study was to build a statistical model to predict severe food insecurity for Brazilian municipalities based on the PNAD dataset. Exclusion criteria were: incomplete food security data (19.30%); informants younger than 18 years old (0.07%); collective households (0.05%); households headed by indigenous persons (0.19%). The modeling was carried out in three stages, beginning with the selection of variables related to food insecurity using univariate logistic regression. The variables chosen to construct the municipal estimates were selected from those included in PNAD as well as the 2000 Census. Multivariate logistic regression was then initiated, removing the non-significant variables with odds ratios adjusted by multiple logistic regression. The Wald Test was applied to check the significance of the coefficients in the logistic equation. The final model included the variables: per capita income; years of schooling; race and gender of the household head; urban or rural residence; access to public water supply; presence of children; total number of household inhabitants and state of residence. The adequacy of the model was tested using the Hosmer-Lemeshow test (p=0.561) and ROC curve (area=0.823). Tests indicated that the model has strong predictive power and can be used to determine household food insecurity in Brazilian municipalities, suggesting that similar predictive models may be useful tools in other Latin American countries.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Several biological phenomena have a behavior over time mathematically characterized by a strong increasing function in the early stages of development, then by a less pronounced growth, sometimes showing stability. The separation between these phases is very important to the researcher, since the maintenance of a less productive phase results in uneconomical activity. In this report we present methods of determining critical points in logistic functions that separate the early stages of growth from the asymptotic phase, with the aim of establishing a stopping critical point in the growth and on this basis determine differences in treatments. The logistic growth model is fitted to experimental data of imbibition of arariba seeds (Centrolobium tomentosum). To determine stopping critical points the following methods were used: i) accelerating growth function, ii) tangent at the inflection point, iii) segmented regression; iv) modified segmented regression; v) non-significant difference; and vi) non-significant difference by simulation. The analysis of variance of the abscissas and ordinates of the breakpoints was performed with the objective of comparing treatments and methods used to determine the critical points. The methods of segmented regression and of the tangent at the inflection point lead to early stopping points, in comparison with other methods, with proportions ordinate/asymptote lower than 0.90. The non-significant difference method by simulation had higher values of abscissas for stopping point, with an average proportion ordinate/asymptote equal to 0.986. An intermediate proportion of 0.908 was observed for the acceleration function method.
Resumo:
The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.
Resumo:
The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.
Resumo:
PURPOSE To explore whether population-related pharmacogenomics contribute to differences in patient outcomes between clinical trials performed in Japan and the United States, given similar study designs, eligibility criteria, staging, and treatment regimens. METHODS We prospectively designed and conducted three phase III trials (Four-Arm Cooperative Study, LC00-03, and S0003) in advanced-stage, non-small-cell lung cancer, each with a common arm of paclitaxel plus carboplatin. Genomic DNA was collected from patients in LC00-03 and S0003 who received paclitaxel (225 mg/m(2)) and carboplatin (area under the concentration-time curve, 6). Genotypic variants of CYP3A4, CYP3A5, CYP2C8, NR1I2-206, ABCB1, ERCC1, and ERCC2 were analyzed by pyrosequencing or by PCR restriction fragment length polymorphism. Results were assessed by Cox model for survival and by logistic regression for response and toxicity. Results Clinical results were similar in the two Japanese trials, and were significantly different from the US trial, for survival, neutropenia, febrile neutropenia, and anemia. There was a significant difference between Japanese and US patients in genotypic distribution for CYP3A4*1B (P = .01), CYP3A5*3C (P = .03), ERCC1 118 (P < .0001), ERCC2 K751Q (P < .001), and CYP2C8 R139K (P = .01). Genotypic associations were observed between CYP3A4*1B for progression-free survival (hazard ratio [HR], 0.36; 95% CI, 0.14 to 0.94; P = .04) and ERCC2 K751Q for response (HR, 0.33; 95% CI, 0.13 to 0.83; P = .02). For grade 4 neutropenia, the HR for ABCB1 3425C-->T was 1.84 (95% CI, 0.77 to 4.48; P = .19). CONCLUSION Differences in allelic distribution for genes involved in paclitaxel disposition or DNA repair were observed between Japanese and US patients. In an exploratory analysis, genotype-related associations with patient outcomes were observed for CYP3A4*1B and ERCC2 K751Q. This common-arm approach facilitates the prospective study of population-related pharmacogenomics in which ethnic differences in antineoplastic drug disposition are anticipated.
Resumo:
IMPORTANCE Because effective interventions to reduce hospital readmissions are often expensive to implement, a score to predict potentially avoidable readmissions may help target the patients most likely to benefit. OBJECTIVE To derive and internally validate a prediction model for potentially avoidable 30-day hospital readmissions in medical patients using administrative and clinical data readily available prior to discharge. DESIGN Retrospective cohort study. SETTING Academic medical center in Boston, Massachusetts. PARTICIPANTS All patient discharges from any medical services between July 1, 2009, and June 30, 2010. MAIN OUTCOME MEASURES Potentially avoidable 30-day readmissions to 3 hospitals of the Partners HealthCare network were identified using a validated computerized algorithm based on administrative data (SQLape). A simple score was developed using multivariable logistic regression, with two-thirds of the sample randomly selected as the derivation cohort and one-third as the validation cohort. RESULTS Among 10 731 eligible discharges, 2398 discharges (22.3%) were followed by a 30-day readmission, of which 879 (8.5% of all discharges) were identified as potentially avoidable. The prediction score identified 7 independent factors, referred to as the HOSPITAL score: h emoglobin at discharge, discharge from an o ncology service, s odium level at discharge, p rocedure during the index admission, i ndex t ype of admission, number of a dmissions during the last 12 months, and l ength of stay. In the validation set, 26.7% of the patients were classified as high risk, with an estimated potentially avoidable readmission risk of 18.0% (observed, 18.2%). The HOSPITAL score had fair discriminatory power (C statistic, 0.71) and had good calibration. CONCLUSIONS AND RELEVANCE This simple prediction model identifies before discharge the risk of potentially avoidable 30-day readmission in medical patients. This score has potential to easily identify patients who may need more intensive transitional care interventions.
Resumo:
PURPOSE Rapid assessment and intervention is important for the prognosis of acutely ill patients admitted to the emergency department (ED). The aim of this study was to prospectively develop and validate a model predicting the risk of in-hospital death based on all available information available at the time of ED admission and to compare its discriminative performance with a non-systematic risk estimate by the triaging first health-care provider. METHODS Prospective cohort analysis based on a multivariable logistic regression for the probability of death. RESULTS A total of 8,607 consecutive admissions of 7,680 patients admitted to the ED of a tertiary care hospital were analysed. Most frequent APACHE II diagnostic categories at the time of admission were neurological (2,052, 24 %), trauma (1,522, 18 %), infection categories [1,328, 15 %; including sepsis (357, 4.1 %), severe sepsis (249, 2.9 %), septic shock (27, 0.3 %)], cardiovascular (1,022, 12 %), gastrointestinal (848, 10 %) and respiratory (449, 5 %). The predictors of the final model were age, prolonged capillary refill time, blood pressure, mechanical ventilation, oxygen saturation index, Glasgow coma score and APACHE II diagnostic category. The model showed good discriminative ability, with an area under the receiver operating characteristic curve of 0.92 and good internal validity. The model performed significantly better than non-systematic triaging of the patient. CONCLUSIONS The use of the prediction model can facilitate the identification of ED patients with higher mortality risk. The model performs better than a non-systematic assessment and may facilitate more rapid identification and commencement of treatment of patients at risk of an unfavourable outcome.
Resumo:
This study examines Hispanic levels of incorporation and access to health care. Applying the Aday and Andersen framework for the study of access, the study examined the relationship between two levels of Hispanic incorporation into U.S. society, i.e., mainstream versus ethnic, and potential and realized measures of access to health care. Data for the study were drawn from a 1992 telephone survey of 600 randomly selected Hispanics in Houston and Harris County.^ The hypotheses tested were: (1) Hispanics who are incorporated into mainstream society are more likely to have better potential and realized access to health care than those who are incorporated into ethnic-group enclaves regardless of their socioeconomic status (SES), health status and health needs, and (2) there is no interaction between the levels of incorporation (mainstream or ethnic) and SES, health status, and health needs in predicting potential and realized access.^ The data analysis supported Hypothesis One for the two measures of potential access. The results of bivariate and multiple logistic regression analyses indicated that for Hispanics in Houston and Harris County, being in the "mainstream" incorporation category increased their potential access to care, having "health insurance" and a "regular place of care". For the selected measure of realized access, having a "regular check-up", the analysis did not demonstrate statistically significant differences in having a regular check-up among Hispanics incorporated in the ethnic or mainstream incorporation categories.^ Hypothesis Two, that there is no interaction between the levels of incorporation and socioeconomic characteristics, health status, and health needs in predicting potential and realized access among Hispanics was supported by the data. The results of the logistic regression analysis showed that, after adjusting for socioeconomic status, health status, and health needs, the association between "level of incorporation" and the two measures of potential access ("health insurance" and having a "usual place of care") was not modified by the control variables nor by their interaction with level of incorporation. That is, the effect of incorporation on Hispanics' health insurance coverage, and having a usual place of care, was homogenous across Hispanics with different SES and health status.^ The main research implication of this dissertation is the employment of a theoretical framework for the assessment of cultural factors essential to research on migrating heterogeneous subpopulations. It also provided strategies to solve practical and methodological difficulties in the secondary analyses of data on these populations. ^
Resumo:
Despite continued research and public health efforts to reduce smoking during pregnancy, prenatal cessation rates in the United States have decreased and the incidence of low birth weight has increased from 1985 to 1991. Lower socioeconomic status women who are at increased risk for poor pregnancy outcomes may be resistant to current intervention efforts during pregnancy. The purpose of this dissertation was to investigate the determinants of continued smoking and quitting among low-income pregnant women.^ Using data from cross-sectional surveys of 323 low-income pregnant smokers, the first study developed and tested measures of the pros and cons of smoking during pregnancy. The original decisional balance measure for smoking was compared with a new measure that added items thought to be more salient to the target population. Confirmatory factor analysis using structural equation modeling showed neither the original nor new measure fit the data adequately. Using behavioral science theory, content from interviews with the population, and statistical evidence, two 7-item scales representing the pros and cons were developed from a portion (n = 215) of the sample and successfully cross-validated on the remainder of the sample (n = 108). Logistic regression found only pros were significantly associated with continued smoking. In a discriminant function analysis, stage of change was significantly associated with pros and cons of smoking.^ The second study examined the structural relationships between psychosocial constructs representing some of the levels of and the pros and cons of smoking. The cross-sectional design mandates that statements made regarding prediction do not prove causation or directionality from the data or methods analysis. Structural equation modeling found the following: more stressors and family criticism were significantly more predictive of negative affect than social support; a bi-directional relationship was found between negative affect and current nicotine addiction; and negative affect, addiction, stressors, and family criticism were significant predictors of pros of smoking.^ The findings imply reversing the trend of decreasing smoking cessation during pregnancy may require supplementing current interventions for this population of pregnant smokers with programs addressing nicotine addiction, negative affect, and other psychosocial factors such as family functioning and stressors. ^
Resumo:
The purposes of this study were (1) to validate of the item-attribute matrix using two levels of attributes (Level 1 attributes and Level 2 sub-attributes), and (2) through retrofitting the diagnostic models to the mathematics test of the Trends in International Mathematics and Science Study (TIMSS), to evaluate the construct validity of TIMSS mathematics assessment by comparing the results of two assessment booklets. Item data were extracted from Booklets 2 and 3 for the 8th grade in TIMSS 2007, which included a total of 49 mathematics items and every student's response to every item. The study developed three categories of attributes at two levels: content, cognitive process (TIMSS or new), and comprehensive cognitive process (or IT) based on the TIMSS assessment framework, cognitive procedures, and item type. At level one, there were 4 content attributes (number, algebra, geometry, and data and chance), 3 TIMSS process attributes (knowing, applying, and reasoning), and 4 new process attributes (identifying, computing, judging, and reasoning). At level two, the level 1 attributes were further divided into 32 sub-attributes. There was only one level of IT attributes (multiple steps/responses, complexity, and constructed-response). Twelve Q-matrices (4 originally specified, 4 random, and 4 revised) were investigated with eleven Q-matrix models (QM1 ~ QM11) using multiple regression and the least squares distance method (LSDM). Comprehensive analyses indicated that the proposed Q-matrices explained most of the variance in item difficulty (i.e., 64% to 81%). The cognitive process attributes contributed to the item difficulties more than the content attributes, and the IT attributes contributed much more than both the content and process attributes. The new retrofitted process attributes explained the items better than the TIMSS process attributes. Results generated from the level 1 attributes and the level 2 attributes were consistent. Most attributes could be used to recover students' performance, but some attributes' probabilities showed unreasonable patterns. The analysis approaches could not demonstrate if the same construct validity was supported across booklets. The proposed attributes and Q-matrices explained the items of Booklet 2 better than the items of Booklet 3. The specified Q-matrices explained the items better than the random Q-matrices.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06