955 resultados para Liquid Helium Temperature
Resumo:
When the aggregation of C-60 is arranged in mono-dispersed state on the ITO substrate, the photoluminescence (PL) spectra are observed clearly. These emission peaks are attributed to recombination of self - trapped excitons, the zero-phonon exciton (R-0) and its phonon replicas.
Resumo:
The shear-induced spiral-like morphology of a main-chain thermotropic liquid crystalline poly(aryl ether ketone) is observed and characterized by means of polarizing light microscopy, atomic force microscopy, transmission electron microscopy and electron diffraction techniques. The spiral-like texture is formed during shearing in the temperature range of liquid crystalline to isotropic transition (335-340 degreesC), and dispersed discontinuously in the mosaic matrix. Electron diffraction results indicate that the spiral exhibits orthorhombic lateral packing of the crystals and homeotropic alignment of the molecules. The spiral formation process and possible affecting factors are discussed.
Resumo:
The homoepitaxial crystallization in the films of a thermotropic liquid crystalline chloro-ply(aryl ether ketone) is studied by transmission electron microscopy (TEM) and electron diffraction (ED). The homoepitaxy takes place in the temperature range 330-320 degreesC, in which a highly-ordered smectic crystalline phase of the copolymer with a single-crystal-like banded structure is formed during the cooling process from the isotropic melt. The homoepitaxial crystallizations with angles of 32 degrees and 122 degrees between the two b axes are the major populations observed, and possess epitaxial contact planes of (100)(I)-(210)(II) and (010)(I)-(210)(II); respectively.
Resumo:
An alignment study of a liquid crystalline copolyether TPP-7/11(5/5) thin films has been carried out in a 10 kV . cm(-1) electrostatic field parallel to the thin film surface normal. This copolyether possesses a negative dielectric anisotropy. The chain molecules are homogeneously aligned in the electric field and they form two-dimensionally ordered lamellae in a tilted columnar phase when the samples were cooled to room temperature. It is observed that the chain molecules are splayed to form bent lamellae and the chain direction is perpendicular to the tangential direction of the lamellar surfaces. These lamellae thus become replicas of the chain orientation, Due to the flexoelectric effect and density fluctuation on the thin film free surface, disclinations having topological strength s = 1, c = pi /4 and defect walls form. These s = 1 disclinations possesses both left- and right-handednesses. Discussion of the defect formations have been attempted.
Resumo:
A new series of side chain liquid crystal polymers based on the backbone of polymethacrylate containing 4-nitroazobenzene and 4-methoxybiphenyl group as side chain mesogen were prepared and characterized, FTIR, H-1 NMR, POM and WAXD were used to study the structure, phase behavior and mesophase texture of this series of SCLC copolymers. The researches show that polymer PM5MPP and copolymer M5MPP/MMEANB are enantiotropic liquid crystalline polymers, but polymer PMMEANB has no liquid crystalline properties. DSC results showed that the thermal stability of the mesophase of this series of copolymers was enhanced by the existence of intermolecular electron donor-acceptor interaction. It was found that the temperature range of the mesophase of the copolymers was broadened with increasing 4-nitroazobenzene units. The focal-conic texture observed by POM indicated that this series of the copolymers possessed the characteristics of smectic liquid crystal.
Resumo:
Series of thermotropic liquid crystalline poly (aryl ether ketone) s were synthesized by mucleophilic substitution reactions of 4,4'-biphenol and substituted hydroquinone with different difluoromonomers, The relationship between structure and properties of the novel copolymers was investigated. For the copolymers with liquid crystalline properties, their melting transition temperatures show no great change with increase the content of the crystal-disrupting unit. The reason is that the crystal phase is directly transformed from the ordered liquid crystal phase. Side-groups have important effect on mesophase stability, The temperature range of mesophase stability for the chloro-polymers is smaller than those of other series of copolymers (P-phenyl, t-butyl, methoxy, 3-trifluoromethylbenzene). This behavior indicates that the effect of geometric repulsive factor on the thermodynamic stability of the mesophase is much larger than that of the polarizability attractive factor. Different ordered liquid crystal phases are observed in the polymers with different molecular weights. At low molecular weight, highly ordered smectic liquid crystal phases form. With increasing the molecular weight, the ordered degree of the liquid crystals decreases, and only the nematic liquid crystal phase is observed in the polymer with higher molecular weight.
Resumo:
A series of liquid crystalline copolyethers have been synthesized from 1-(4-hydroxy-4'-biphenyl)-2-(4-hydroxyphenyl)propane with 1,7-dibromoheptane and 1,12-dibromododecene [coTPPs(7/12)], which represents copolyethers containing both odd and even numbers of methylene units. The molar ratio of odd to even methylene units in this series ranges from 1/9 to 9/1. The coTPPs(7/12) exhibit multiple phase transitions during cooling and heating in differential scanning calorimetry experiments. For all these thermal transitions, a small undercooling and superheating dependence is observed upon cooling and heating at different rates. Three types of phase behaviors can be classified in coTPPs(7/12) on the basis of the structural analyses by wide-angle X-ray diffraction on powder and fiber samples and by electron diffraction experiments in transmission electron microscopy. At room temperature, highly ordered smectic and smectic crystal (SC) phases are identified in coTPPs(7/12: 1/9 and 2/8), which is similar to the homopolymer TPP(m = 12). The coTPPs(7/12: 3/7, 4/6, and 5/5) possess a hexagonal columnar (Phi(H)) phase in which the molecular and columnar axes are parallel to the fiber direction and perpendicular to the hexagonal lateral packing. The coTPPs(7/12: 6/4, 7/3, and 8/2) possess a tilted hexagonal columnar (Phi(TH)) phase with a single tilt angle which increases with the increasing composition of the seven-numbered methylene units. However, in coTPP(7/12: 9/1), a Phi(TH) phase with multiple tilt angles is found. Upon heating, phase structures in most coTPPs(7/12) involving the columnar phases enter directly into the nematic (N) phase, while the coTPP(7/12: 1/9) exhibits a highly ordered smectic F (S-F) phase before it reaches the N phase. One exception is found in coTPP(7/12: 2/8), wherein the transformation from the S-F to Phi(H) occurs prior to the N phase. Combining the copolymer phase behaviors observed with the corresponding homopolymers TPP(n = 7) and TPP(m = 12), a phase diagram describing transition temperatures with respect to the composition can be constructed.
Resumo:
The orientational behavior of liquid crystalline polymers with para-nitro azobenzene as side chains under electric field was studied by UV-visible spectroscopy. The results showed that lambda(max) of the poled polymer films was around 394nm, compared to that of the unpoled films, the absorption decreased due to poling. The orientational parameters increased linearly with the increase of the electric field. The temporal stability of the poled polymer film is good at room temperature. This kind of materials showed promise application as nonlinear optical component in photorefractive polymers.
Resumo:
A series of liquid crystalline copolyethers has been synthesized from 1-(4-hydroxy-4'-biphenyl)-2-(4-hydroxyphenyl)propane and different alpha,omega-dibromoalkanes [coTPP(n/m)]. In this report, coTPPs having n = 5, 7, 9, 11 and m = 12 are studied, which represent copolyethers having both varying odd number and a fixed even number of methylene units. The compositions were fixed at an equal molar ratio (50/50). These coTPPs(nlm) show multiple phase transitions during cooling and heating in differential scanning calorimetry experiments. The undercooling dependence of these transitions is found to be small, indicating that these transitions are close to equilibrium, Although the coTPPs possess a high-temperature nematic (N) phase, the periodicity order along the chain direction is increasingly disturbed when the length of the odd-numbered methylene units decreases from n 11 to 5. in the coTPPs(5/12, 7/12, and 9/12), wide-angle X-ray diffraction experiments at different temperatures show that, shortly after the N phase formation during cooling, the lateral molecular packing improves toward a hexagonal lattice, as evidenced by a gradual narrowing of the scattering halo. This process represents the possible existence of an exotic N phase, which serves as a precursor to the columnar (Phi(H)) phase. A further decrease in temperature leads to a (PH phase having a long-range ordered, two-dimensional hexagonal lattice. In coTPP(11/12), the phase structures are categorized as highly ordered and tilted, smectic and smectic crystal phases, similar to homoTPPs, such as the smectic F (S-F) and smectic crystal G (SCG) phases. An interesting observation is found for coTPP(9/12), wherein a structural change from the high-temperature Phi(H) phase to the low-temperature S-F phase occurs. It can be proven that, upon heating, the well-defined layer structure disappears and the lateral packing remains hexagonal. The overall structural differences in this series of coTPPs between those of the columnar and highly ordered smectic phases are related to the disorders introduced into the layer structure by the dissimilarity of the methylene unit lengths in the comonomers.
Resumo:
Crosslinkable side-chain liquid crystalline polyesters PCn from N-[n-(4-(4-nitrophenylazo)phenyloxy)alkyl]diethanolamine (Cn, n = 3, 5, 6, 10) as mesogenic monomers and maleic anhydride were synthesized and characterized. The thermal properties of PCn's were studied by means of DSC, polarized optical microscopy (POM) and wide angle X-ray diffraction (WAXD), and the results showed that all the polymers studied exhibit enantiotropic liquid crystallinity. In the molar mass independent region, the relatively high content of cis -CH=CH- groups in the polymer backbone of PC3 causes an increase of the melting temperature (T-m) and a decrease of T-g and isotropisation temperature (T-i). The crosslinking of PCn in the radical polymerization with styrene was confirmed by FTIR spectroscopy. The absorption band at 1300 cm(-1) attributed to the in-plane C-H-bending vibration of trans -CH=CH- in the polymer backbone disappeared after crosslinking, indicating that the trans -CH=CH- functions are consumed in the crosslinking polymerization of styrene.
Resumo:
Molecule dynamics simulation was used on HPT(2,3,6,7,10,11-hexa-n-pentyloxytriphenylene), which is a discotic Liquid crystal. From analyzing the energy and displacement varying with the temperature, the phase transition temperature of PM6MPP can be predicted. The deviations of T-g, T-m and T-i due to the MD time scale are small enough that it should be possibly used to predict the material properties especially when more powerful computers are available.
Resumo:
In this paper, phase transition temperatures of side chain liquid crystal polymer were predicted by molecular dynamics simulation. We analyzed the change of energy and the degree of similarity(S) with the temperature varying. The simulated phase transition temperatures agree with the experimental values in a proper deviation.
Resumo:
A novel engineering thermoplastic, phenolphthalein poly (ether-ether-sulfone) (PES-C) was blended with a commercial thermotropic liquid crystalline polymer(TLCP), Vectra A950, up to 30 weight percent of TLCP. A rheometrics dynamic spectrometer (RDS-I) and a CEAST capillary rheometer, a rheoscope 1000 were employed to investigate the melt rheology and extrusion behaviour at both the low and high shearing rates. The morphologies of the blends under different shearing were observed with a scanning electron microscope(SEM) and correlated to the observed rheology. The principal normal stress differences measured with cone-and-plate geometry give a temperature-independent correlation for both blend and PES-C when they are plotted against shear stress. But the extrudate swell of the blends showed a strong temperature dependence at each shear stress. The concentration dependence of extrudate swell shows a contrary behaviour to that of the inorganic filled system. A reasonable hypothesis based on the relaxation and disorientation of TLCP during flowing in the capillary and exiting was given to explain it. The melt fracture was checked after extrusion from capillary and was discussed.
Resumo:
A new series of liquid crystals of bis[4-(p-phenoxy)-phenylbenozoate] alkyldicarboxylate which contain two rigid groups connected by a flexible spacer was synthesized. These liquid crystals show nematic phase and were found to show odd-even effect in isotropization temperature and entropy change.
Resumo:
Hydrotalcite-like compounds (HTLcs): CoMAlCO3-HTLcs (M=Cu2+, Ni2+, Mn2+, Cr3+, Fe3+), were synthesized by coprecipitation and characterized with XRD and IR. The catalysis of these HTLcs and their calcined products were studied in the p-cresol oxidation, and the effects of the temperature of HTLcs calcination, the ratio of Co/Cu, different promoters, reaction temperatures and reaction times on reaction activities were investigated. It has been found that calcined HTLcs have higher activity than uncalcined samples and mechanical mixed oxides in this reaction. The best yield was obtained from the CoCuAlCO3-HTLc (Co/Cu/Al=3:1:1) calcined at 450 degrees C. A tentative reaction mechanism was also proposed. (C) 1998 Elsevier Science B.V.