823 resultados para Links and link-motion.
Resumo:
Skillful tool use requires knowledge of the dynamic properties of tools in order to specify the mapping between applied force and tool motion. Importantly, this mapping depends on the orientation of the tool in the hand. Here we investigate the representation of dynamics during skillful manipulation of a tool that can be grasped at different orientations. We ask whether the motor system uses a single general representation of dynamics for all grasp contexts or whether it uses multiple grasp-specific representations. Using a novel robotic interface, subjects rotated a virtual tool whose orientation relative to the hand could be varied. Subjects could immediately anticipate the force direction for each orientation of the tool based on its visual geometry, and, with experience, they learned to parameterize the force magnitude. Surprisingly, this parameterization of force magnitude showed limited generalization when the orientation of the tool changed. Had subjects parameterized a single general representation, full generalization would be expected. Thus, our results suggest that object dynamics are captured by multiple representations, each of which encodes the mapping associated with a specific grasp context. We suggest that the concept of grasp-specific representations may provide a unifying framework for interpreting previous results related to dynamics learning.
Resumo:
In many mining operations (e.g. excavation, drilling, tunnelling, rock crushing) metallic components are forced against abrasive rocks in a complex motion. This study examines the relative importance of combined rolling and sliding motion in the two-body abrasive wear of a low carbon tempered martensitic steel against rock counterfaces. A novel wear test rig has been used to vary the amount of rolling and sliding motion between a rotating steel cylinder and a counter-rotating sandstone (highly abrasive) or limestone (much less abrasive) disc. Weight-loss measurements reveal that the wear rate of the steel increases as the amount of motion against the rock counterface is reduced from pure sliding to approximately 50% sliding (and approximately 50% rolling). Scanning electron microscopy shows that when the amount of motion is reduced from pure sliding to approximately 50% sliding the topographical and sub-surface physical properties of the worn steel and rock surfaces are modified.
Resumo:
In spite of over two decades of intense research, illumination and pose invariance remain prohibitively challenging aspects of face recognition for most practical applications. The objective of this work is to recognize faces using video sequences both for training and recognition input, in a realistic, unconstrained setup in which lighting, pose and user motion pattern have a wide variability and face images are of low resolution. In particular there are three areas of novelty: (i) we show how a photometric model of image formation can be combined with a statistical model of generic face appearance variation, learnt offline, to generalize in the presence of extreme illumination changes; (ii) we use the smoothness of geodesically local appearance manifold structure and a robust same-identity likelihood to achieve invariance to unseen head poses; and (iii) we introduce an accurate video sequence "reillumination" algorithm to achieve robustness to face motion patterns in video. We describe a fully automatic recognition system based on the proposed method and an extensive evaluation on 171 individuals and over 1300 video sequences with extreme illumination, pose and head motion variation. On this challenging data set our system consistently demonstrated a nearly perfect recognition rate (over 99.7%), significantly outperforming state-of-the-art commercial software and methods from the literature. © Springer-Verlag Berlin Heidelberg 2006.
Resumo:
The measurement of cantilever parameters is an essential part of performing a calibrated measurement with an atomic force microscope (AFM). The thermal motion method is a widely used technique for calibrating the spring constant of an AFM cantilever, which can be applied to non-rectangular cantilevers. Given the trend towards high frequency scanning, calibration of non-rectangular cantilevers is of increasing importance. This paper presents two results relevant to cantilever calibration via the thermal motion method. We demonstrate the possibility of using the AFM's phase signal to acquire the thermal motion. This avoids the challenges associated with connecting the raw photodiode signal to a separate spectrum analyser. We also describe how numerical calculations may be used to calculate the parameters needed in a thermal motion calibration of a non-rectangular cantilever. Only accurate knowledge of the relative size of the in-plane dimensions of the cantilever is needed in this computation. We use this pair of results in the calibration of a variety of rectangular and non-rectangular cantilevers. We observe an average difference between the Sader and thermal motion values of cantilever stiffness of 10%.
Resumo:
OBJECTIVE: This work is concerned with the creation of three-dimensional (3D) extended-field-of-view ultrasound from a set of volumes acquired using a mechanically swept 3D probe. 3D volumes of ultrasound data can be registered by attaching a position sensor to the probe; this can be an inconvenience in a clinical setting. A position sensor can also cause some misalignment due to patient movement and respiratory motion. We propose a combination of three-degrees-of-freedom image registration and an unobtrusively integrated inertial sensor for measuring orientation. The aim of this research is to produce a reliable and portable ultrasound system that is able to register 3D volumes quickly, making it suitable for clinical use. METHOD: As part of a feasibility study we recruited 28 pregnant females attending for routine obstetric scans to undergo 3D extended-field-of-view ultrasound. A total of 49 data sets were recorded. Each registered data set was assessed for correct alignment of each volume by two independent observers. RESULTS: In 77-83% of the data sets more than four consecutive volumes registered. The successful registration relies on good overlap between volumes and is adversely affected by advancing gestational age and foetal movement. CONCLUSION: The development of reliable 3D extended-field-of-view ultrasound may help ultrasound practitioners to demonstrate the anatomical relation of pathology and provide a convenient way to store data.
Resumo:
In this paper we consider the problem of constructing a distributed feedback law to achieve synchronization for a group of k agents whose states evolve on SO(n) and which exchange only partial state information along communication links. The partial state information is given by the action of the state on reference vectors in ℝn. We propose a gradient based control law which achieves exponential local convergence to a synchronization configuration under a rank condition on a generalized Laplacian matrix. Furthermore, we discuss the case of time-varying reference vectors and provide a convergence result for this case. The latter helps reach synchronization, requiring less communication links and weaker conditions on the instantaneous reference vectors. Our methods are illustrated on an attitude synchronization problem where agents exchange only their relative positions observed in the respective body frames. ©2009 IEEE.
Resumo:
We explore collective behavior in biological systems using a cooperative control framework. In particular, we study a hysteresis phenomenon in which a collective switches from circular to parallel motion under slow variation of the neighborhood size in which individuals tend to align with one another. In the case that the neighborhood radius is less than the circular motion radius, both circular and parallel motion can occur. We provide Lyapunov-based analysis of bistability of circular and parallel motion in a closed-loop system of self-propelled particles with coupled-oscillator dynamics. ©2007 IEEE.
Resumo:
Within the framework of the pilot heavy-ion therapy facility at GSI equipped with an active beam delivery system of advanced raster scanning technique, a feasibility study on actively conformal heavy-ion irradiation to moving tumors has been experimentally conducted. Laterally, real-time corrections to the beam scanning parameters by the raster scanner, leading to an active beam tracing, compensate for the lateral motion of a target volume. Longitudinally, a mechanically driven wedge energy degrader (called depth scanner) is applied to adjust the beam energy so as to locate the high-dose Bragg peak of heavy ion beam to the slice under treatment for the moving target volume. It has been experimentally shown that compensations for lateral target motion by the raster scanner and longitudinal target shift by the depth scanner are feasible.
Resumo:
The vertical growth of seagrasses in response to burial by migration of bedforms is combined with dating techniques to provide precise and rapid estimates of the migration speed of subaqueous dunes over seagrass patches. Two methods to estimate the time interval between the passage of successive dunes and the motion of single dunes through seagrass patches are described. The second method is more precise. The application of these methods to vegetated (Cymodocea nodosa) subaqueous dunes in the Alfacs Bay (NW Mediterranean) showed that the dunes traveled at an average speed of $13.0 \pm 0.6 m yr^-1$ and demonstrated that the methods can resolve migration speeds from 0.15 to $980 m yr^-1$ with this particular seagrass species. In areas vegetated with different seagrass species, bedform migration can be estimated over different time scales. The strong coupling between seagrass and sediment dynamics resembles the coupling of vegetation and land dunes.
Resumo:
区域土壤侵蚀与环境研究,是在比较大的中间尺度和较长的时间尺度上,对土壤侵蚀发生发展过程、土壤侵蚀因子、土壤侵蚀定量评价方法,以及土壤侵蚀治理对环境的影响进行研究的科学与技术体系。该领域的研究,即能直接为国家水土保持宏观决策提供支持,又能揭示土壤侵蚀的宏观规律,并于全球变化研究相联系。我国在该领域的研究主要概括四个方面,包括:①区域土壤侵蚀因子研究,是为认识土壤侵蚀环境特征和进行土壤侵蚀定量评价的基础,②区域土壤侵蚀评价研究,包括调查制图、定性评价和定量评价等,是该研究服务于水土保持实践的基本途径;③水土保持的环境效应研究,是从另外一个视角对土壤侵蚀环境与水土流失及其治理关系的认识。是确切评估水土保持效益,保证水土保持工作健康持续稳定发展的基础。今后应尽快开发区域水土流失定量评价模型,并在区域尺度上对环境效应的方式、范围、程度和发展趋势做出综合计价和分析预测。
Resumo:
A method for the prediction of gas permeabilities (P) through polymers from their chemical structure has been developed on the basis of the ratio of molar free volume to molar cohesive energy, V(f)/E(coh). The permeation of small gas molecules through polymer membranes is dependent on the chain packing density measured by V(f) and segmental motion of polymer chains measured by E(coh). But no simple relationship between P and V(f) or E(coh) alone was found. The permeability data of more than 60 polymers covering 7 orders of magnitude for six gases have been treated with linear regression analysis. All plots of log P vs. V(f)/E(coh) gave good straight lines. It is also found that a linear relationship holds when plotting both the intercepts and slopes of log P vs. V(f)/E(coh) lines against square of the diameters of gas molecules. Therefore, the permeabilities of all the non-swelling gases through a great variety of polymers can be estimated using two correlations above. Moreover, this method is more accurate than others in the literature and may found useful for the selection of gas separation or barrier membrane materials.
Resumo:
提出了一种可变形移动机器人AMOEBA-I的协同构形变换方法,建立了机器人系统的数学模型,对各个模块之间的协同变换及运动特性进行了分析.研究了机器人3个模块在协同变换过程中的电流变化情况,实现了3种特殊构形之间的变换.通过理论分析和实验比较了协同构形变换方法的特点,实验验证了在多种地面条件下机器人协同构形变换方法的有效性.
Resumo:
蛇形机器人具有比传统移动机器人更强的运动能力,为实现机器人的三维运动而开发的蛇形机器人巡视者II是一个具有强驱动力和高机动性的三维蛇形机器人。它由具有3自由度的模块化单元组成,该单元具有俯仰、偏航和回转3自由度,单元的俯仰和偏航运动是通过由3个伞齿轮组成的差速机构耦合驱动。该单元的圆柱形外壳周围安装有一系列的被动轮来增加机器人运动灵活性。对蛇形机器人模块单元的自由度作了详细分析,并基于机器人的运动机动性设计三维蛇形机器人的单元结构。给出蛇形机器人的控制系统结构,并对耦合变量进行解耦。将蛇形机器人的蜿蜒运动和扭转运动两种基本步伐应用到巡视者II上,试验结果证明了该三维蛇形机器人具有很强的机动性和运动能力。
Resumo:
提出了一种新型爬壁机器人机构,介绍了机构的构型及结构特点,推导了运动学正、逆解方程式,规划了直线行走、平面旋转及交叉面跨越三种运动模式.机构构型及运动模式的分析表明,该机构具有体积小、运动特性较好的特点.仿真结果证明,该机器人在运动过程中所需吸附力矩较小且占据的空间较少.
Resumo:
本文提出了一种适用于新型可重构星球机器人的模块化控制系统,根据机构和运动特性,基于CAN总线和分布式控制器技术,将系统结构和功能分解成不同模块由各自的控制器独立执行,建立具有任务层和运动层的分层次控制结构,实现了组合式规划、分布式控制的混合式控制方法。本文设计了两种不同的控制器,并采用PPG脉冲宽度调节方法实现了对在机器人上使用的R/C电机的标定和控制。通过在子机器人原理样机上进行实验,验证了这套控制系统和控制体系结构的可行性。