882 resultados para Lineage Selection
Resumo:
A comparison of cytogenetical data on acute lymphoblastic leukaemia studied at four large European centres has revealed a non-random dicentric chromosome abnormality: dic(9;20) (p1?3;q11) in 10 patients, nine of whom were children. All had early precursor-B lineage ALL, and eight children had a non-standard risk clinical presentation. The origin of the dicentric chromosome was demonstrated using a range of chromosome banding techniques. This was confirmed by FISH using paints and centromeric probes for chromosomes 9 and 20, together with a number of cosmid probes. The follow-up time of these patients is presently too short and the number of patients too few to determine the prognostic significant of this chromosome abnormality.
Resumo:
A Comment on the Letter by Mark Mineev-Weinstein, Phys. Rev. Lett. 80, 2113 (1998). The authors of the Letter offer a Reply.
Resumo:
Sexual selection theory has primarily focussed on the role of mating preferences for the best individuals in the evolution of condition-dependent ornaments, traits that signal absolute quality. Because the most suitable mate for one individual is not always the best for others, however, we argue that non-directional mate choice can promote the evolution of alternative morphs that are not condition-dependent in their expression (i.e. genetic polymorphism). We list the different mate-choice rules (i.e. all individuals have the same preference; preference depends on the chooser's morph; individuals mate preferentially with conspecifics displaying an uncommon or the most frequent morph) and review experimental studies that investigated mate choice in natural populations of colour-polymorphic animals. Our review emphasises that although the experimental data support the idea that sexual selection plays an important role in the evolution of genetic colour polymorphism in many different ways, little is known about the adaptive value of each mate-choice strategy and about their implication in the evolutionary stability of colour polymorphism. One way of solving this problem is to determine the adaptive function of colour morphs, a worthwhile objective, because better understanding of mate-choice rules in polymorphic species should provide important insights into sexual-selection processes and, in turn, into the maintenance of genetic variation.
Resumo:
We study the problem of front propagation in the presence of inertia. We extend the analytical approach for the overdamped problem to this case, and present numerical results to support our theoretical predictions. Specifically, we conclude that the velocity and shape selection problem can still be described in terms of the metastable, nonlinear, and linear overdamped regimes. We study the characteristic relaxation dynamics of these three regimes, and the existence of degenerate (¿quenched¿) solutions.
Resumo:
We clarify the meaning of the results of Phys. Rev. E 60, R5013 (1999). We discuss the use and implications of periodic boundary conditions, as opposed to rigid-wall ones. We briefly argue that the solutions of the paper above are physically relevant as part of a more general issue, namely the possible generalization to dynamics, of the microscopic solvability scenario of selection.
Resumo:
Gradients of variation-or clines-have always intrigued biologists. Classically, they have been interpreted as the outcomes of antagonistic interactions between selection and gene flow. Alternatively, clines may also establish neutrally with isolation by distance (IBD) or secondary contact between previously isolated populations. The relative importance of natural selection and these two neutral processes in the establishment of clinal variation can be tested by comparing genetic differentiation at neutral genetic markers and at the studied trait. A third neutral process, surfing of a newly arisen mutation during the colonization of a new habitat, is more difficult to test. Here, we designed a spatially explicit approximate Bayesian computation (ABC) simulation framework to evaluate whether the strong cline in the genetically based reddish coloration observed in the European barn owl (Tyto alba) arose as a by-product of a range expansion or whether selection has to be invoked to explain this colour cline, for which we have previously ruled out the actions of IBD or secondary contact. Using ABC simulations and genetic data on 390 individuals from 20 locations genotyped at 22 microsatellites loci, we first determined how barn owls colonized Europe after the last glaciation. Using these results in new simulations on the evolution of the colour phenotype, and assuming various genetic architectures for the colour trait, we demonstrate that the observed colour cline cannot be due to the surfing of a neutral mutation. Taking advantage of spatially explicit ABC, which proved to be a powerful method to disentangle the respective roles of selection and drift in range expansions, we conclude that the formation of the colour cline observed in the barn owl must be due to natural selection.
Resumo:
Executive Summary The unifying theme of this thesis is the pursuit of a satisfactory ways to quantify the riskureward trade-off in financial economics. First in the context of a general asset pricing model, then across models and finally across country borders. The guiding principle in that pursuit was to seek innovative solutions by combining ideas from different fields in economics and broad scientific research. For example, in the first part of this thesis we sought a fruitful application of strong existence results in utility theory to topics in asset pricing. In the second part we implement an idea from the field of fuzzy set theory to the optimal portfolio selection problem, while the third part of this thesis is to the best of our knowledge, the first empirical application of some general results in asset pricing in incomplete markets to the important topic of measurement of financial integration. While the first two parts of this thesis effectively combine well-known ways to quantify the risk-reward trade-offs the third one can be viewed as an empirical verification of the usefulness of the so-called "good deal bounds" theory in designing risk-sensitive pricing bounds. Chapter 1 develops a discrete-time asset pricing model, based on a novel ordinally equivalent representation of recursive utility. To the best of our knowledge, we are the first to use a member of a novel class of recursive utility generators to construct a representative agent model to address some long-lasting issues in asset pricing. Applying strong representation results allows us to show that the model features countercyclical risk premia, for both consumption and financial risk, together with low and procyclical risk free rate. As the recursive utility used nests as a special case the well-known time-state separable utility, all results nest the corresponding ones from the standard model and thus shed light on its well-known shortcomings. The empirical investigation to support these theoretical results, however, showed that as long as one resorts to econometric methods based on approximating conditional moments with unconditional ones, it is not possible to distinguish the model we propose from the standard one. Chapter 2 is a join work with Sergei Sontchik. There we provide theoretical and empirical motivation for aggregation of performance measures. The main idea is that as it makes sense to apply several performance measures ex-post, it also makes sense to base optimal portfolio selection on ex-ante maximization of as many possible performance measures as desired. We thus offer a concrete algorithm for optimal portfolio selection via ex-ante optimization over different horizons of several risk-return trade-offs simultaneously. An empirical application of that algorithm, using seven popular performance measures, suggests that realized returns feature better distributional characteristics relative to those of realized returns from portfolio strategies optimal with respect to single performance measures. When comparing the distributions of realized returns we used two partial risk-reward orderings first and second order stochastic dominance. We first used the Kolmogorov Smirnov test to determine if the two distributions are indeed different, which combined with a visual inspection allowed us to demonstrate that the way we propose to aggregate performance measures leads to portfolio realized returns that first order stochastically dominate the ones that result from optimization only with respect to, for example, Treynor ratio and Jensen's alpha. We checked for second order stochastic dominance via point wise comparison of the so-called absolute Lorenz curve, or the sequence of expected shortfalls for a range of quantiles. As soon as the plot of the absolute Lorenz curve for the aggregated performance measures was above the one corresponding to each individual measure, we were tempted to conclude that the algorithm we propose leads to portfolio returns distribution that second order stochastically dominates virtually all performance measures considered. Chapter 3 proposes a measure of financial integration, based on recent advances in asset pricing in incomplete markets. Given a base market (a set of traded assets) and an index of another market, we propose to measure financial integration through time by the size of the spread between the pricing bounds of the market index, relative to the base market. The bigger the spread around country index A, viewed from market B, the less integrated markets A and B are. We investigate the presence of structural breaks in the size of the spread for EMU member country indices before and after the introduction of the Euro. We find evidence that both the level and the volatility of our financial integration measure increased after the introduction of the Euro. That counterintuitive result suggests the presence of an inherent weakness in the attempt to measure financial integration independently of economic fundamentals. Nevertheless, the results about the bounds on the risk free rate appear plausible from the view point of existing economic theory about the impact of integration on interest rates.
Resumo:
Glucocorticoids affect physiology and behaviour, reproduction and potentially sexual selection as well. Shortterm and moderate glucocorticoid elevations are suggested to be adaptive, and prolonged and high elevations may be extremely harmful. This suggests that optimal reproductive strategies, and thus sexual selection, may be dose dependent. Here, we investigate effects of moderate and high elevations of blood corticosterone levels on intra- and intersexual behaviour and mating success of male common lizards Lacerta vivipara. Females showed less interest and more aggressive behaviour towards high corticosterone males and blood corticosterone levels affected male reproductive strategy. Males of moderate and high corticosterone elevations, compared with Control males, showed increased interest (i.e., higher number of chases, tongue extrusions, and approaches) towards females and high corticosterone males initiated more copulation attempts. However, neither increased male interest nor increased copulation attempts resulted in more copulations. This provides evidence for a best-of-a-bad-job strategy, where males with higher corticosterone levels compensated for reduced female interest and increased aggressive female behaviour directed towards them, by showing higher interest and by conducting more copulation attempts. Blood corticosterone levels affected intrasexual selection as well since moderate corticosterone levels positively affected male dominance, but dominance did not affect mating success. These findings underline the importance of female mate choice and are in line with adaptive compensatory behaviours of males. They further show that glucocorticoid effects on behaviour are dose dependent and that they have important implications for sexual selection and social interactions, and might potentially affect Darwinian fitness.
Resumo:
Some populations of Pogonomyrmex harvester ants comprise genetically differentiated pairs of interbreeding lineages. Queens mate with males of their own and of the alternate lineage and produce pure-lineage offspring which develop into queens and inter-lineage offspring which develop into workers. Here we tested whether such genetic caste determination is associated with costs in terms of the ability to optimally allocate resources to the production of queens and workers. During the stage of colony founding, when only workers are produced, queens laid a high proportion of pure-lineage eggs but the large majority of these eggs failed to develop. As a consequence, the number of offspring produced by incipient colonies decreased linearly with the proportion of pure-lineage eggs laid by queens. Moreover, queens of the lineage most commonly represented in a given mating flight produced more pure-lineage eggs, in line with the view that they mate randomly with the two types of males and indiscriminately use their sperm. Altogether these results predict frequency-dependent selection on pairs of lineages because queens of the more common lineage will produce more pure-lineage eggs and their colonies be less successful during the stage of colony founding, which may be an important force maintaining the coexistence of pairs of lineages within populations.
Resumo:
Sexual selection is responsible for the evolution of male ornaments and armaments, but its role in the evolution of cognition--the ability to process, retain and use information--is largely unexplored. Because successful courtship is likely to involve processing information in complex, competitive sexual environments, we hypothesized that sexual selection contributes to the evolution and maintenance of cognitive abilities in males. To test this, we removed mate choice and mate competition from experimental populations of Drosophila melanogaster by enforcing monogamy for over 100 generations. Males evolved under monogamy became less proficient than polygamous control males at relatively complex cognitive tasks. When faced with one receptive and several unreceptive females, polygamous males quickly focused on receptive females, whereas monogamous males continued to direct substantial courtship effort towards unreceptive females. As a result, monogamous males were less successful in this complex setting, despite being as quick to mate as their polygamous counterparts with only one receptive female. This diminished ability to use past information was not limited to the courtship context: monogamous males (but not females) also showed reduced aversive olfactory learning ability. Our results provide direct experimental evidence that the intensity of sexual selection is an important factor in the evolution of male cognitive ability.
Resumo:
Expression of colony social organization in fire ants appears to be under the control of a single Mendelian factor of large effect. Variation in colony queen number in Solenopsis invicta and its relatives is associated with allelic variation at the gene Gp-9, but not with variation at other unlinked genes; workers regulate queen identity and number on the basis of Gp-9 genotypic compatibility. Nongeneticfactors, such as prior social experience, queen reproductive status, and local environment, have negligible effects on queen number which illustrates the nearly complete penetrance of Gp-9. As predicted, queen number can be manipulated experimentally by altering worker Gp-9 genotype frequencies. The Gp-9 allele lineage associated with polygyny in South American fire? ants has been retained across multiple speciation events, which may signal the action of balancing selection to maintain social polymorphism in these species. Moreover positive selection is implicated in driving the molecular evolution of Gp-9 in association with the origin of polygyny. The identity of the product of Gp-9 as an odorant-binding protein suggests plausible scenarios for its direct involvement in the regulation of queen number via a role in chemical communication. While these and other lines of evidence show that Gp-9 represents a legitimate candidate gene of major effect, studies aimed at determining (i) the biochemical pathways in which GP-9 functions; (ii) the phenotypic effects of molecular variation at Gp-9 and other pathway genes; and (iii) the potential involvement of genes in linkage disequilibrium with Gp-9 are needed to elucidate the genetic architecture underlying social organization in fire ants. Information that reveals the links between molecular variation, individual phenotype, and colony-level behaviors, combined with behavioral models that incorporate details of the chemical communication involved in regulating queen number will yield a novel integrated view of the evolutionary changes underlying a key social adaptation.
Resumo:
In addition to differences in protein-coding gene sequences, changes in expression resulting from mutations in regulatory sequences have long been hypothesized to be responsible for phenotypic differences between species. However, unlike comparison of genome sequences, few studies, generally restricted to pairwise comparisons of closely related mammalian species, have assessed between-species differences at the transcriptome level. They reported that gene expression evolves at different rates in various organs and in a pattern that is overall consistent with neutral models of evolution. In the first part of my thesis, I investigated the evolution of gene expression in therian mammals (i.e.7 placental and marsupials), based on microarray data from human, mouse and the gray short-tailed opossum (Monodelphis domestica). In addition to autosomal genes, a special focus was given to the evolution of X-linked genes. The therian X chromosome was recently shown to be younger than previously thought and to harbor a specific gene content (e.g., genes involved in brain or reproductive functions) that is thought to have been shaped by specific sex-related evolutionary forces. Sex chromosomes derive from ordinary autosomes and their differentiation led to the degeneration of the Y chromosome (in mammals) or W chromosome (in birds). Consequently, X- or Z-linked genes differ in gene dose between males and females such that the heterogametic sex has half the X/Z gene dose compared to the ancestral state. To cope with this dosage imbalance, mammals have been reported to have evolved mechanisms of dosage compensation.¦In the first project, I could first show that transcriptomes evolve at different rates in different organs. Out of the five tissues I investigated, the testis is the most rapidly evolving organ at the gene expression level while the brain has the most conserved transcriptome. Second, my analyses revealed that mammalian gene expression evolution is compatible with a neutral model, where the rates of change in gene expression levels is linked to the efficiency of purifying selection in a given lineage, which, in turn, is determined by the long-term effective population size in that lineage. Thus, the rate of DNA sequence evolution, which could be expected to determine the rate of regulatory sequence change, does not seem to be a major determinant of the rate of gene expression evolution. Thus, most gene expression changes seem to be (slightly) deleterious. Finally, X-linked genes seem to have experienced elevated rates of gene expression change during the early stage of X evolution. To further investigate the evolution of mammalian gene expression, we generated an extensive RNA-Seq gene expression dataset for nine mammalian species and a bird. The analyses of this dataset confirmed the patterns previously observed with microarrays and helped to significantly deepen our view on gene expression evolution.¦In a specific project based on these data, I sought to assess in detail patterns of evolution of dosage compensation in amniotes. My analyses revealed the absence of male to female dosage compensation in monotremes and its presence in marsupials and, in addition, confirmed patterns previously described for placental mammals and birds. I then assessed the global level of expression of X/Z chromosomes and contrasted this with its ancestral gene expression levels estimated from orthologous autosomal genes in species with non-homologous sex chromosomes. This analysis revealed a lack of up-regulation for placental mammals, the level of expression of X-linked genes being proportional to gene dose. Interestingly, the ancestral gene expression level was at least partially restored in marsupials as well as in the heterogametic sex of monotremes and birds. Finally, I investigated alternative mechanisms of dosage compensation and found that gene duplication did not seem to be a widespread mechanism to restore the ancestral gene dose. However, I could show that placental mammals have preferentially down-regulated autosomal genes interacting with X-linked genes which underwent gene expression decrease, and thus identified a novel alternative mechanism of dosage compensation.
Resumo:
Clonally distributed inhibitory receptors negatively regulate natural killer (NK) cell function via specific interactions with allelic forms of major histocompatibility complex (MHC) class I molecules. In the mouse, the Ly-49 family of inhibitory receptors is found not only on NK cells but also on a minor (NK1.1+) T cell subset. Using Ly-49 transgenic mice, we show here that the development of NK1.1+ T cells, in contrast to NK or conventional T cells, is impaired when their Ly-49 receptors engage self-MHC class I molecules. Impaired NK1.1+ T cell development in transgenic mice is associated with a failure to select the appropriate CD1-reactive T cell receptor repertoire. In normal mice, NK1.1+ T cell maturation is accompanied by extinction of Ly-49 receptor expression. Collectively, our data imply that developmentally regulated extinction of inhibitory MHC-specific receptors is required for normal NK1.1+ T cell maturation and selection.