985 resultados para Light pulse generators
Resumo:
Oleate-capped ZnO:MgO nanocrystals have been synthesized that are soluble in nonpolar solvents and which emit strongly in the visible region (450−600 nm) on excitation by UV radiation. The visible emission involves recombination of trap states of the nanocrystalline ZnO core and has a higher quantum yield than the band gap UV exciton emission. The spectrally resolved dynamics of the trap states have been investigated by time-resolved emission spectroscopy. The time-evolution of the photoluminescence spectra show that there are, in fact, two features in the visible emission whose relative importance and efficiencies vary with time. These features originate from recombination involving trapped electrons and holes, respectively, and with efficiencies that depend on the occupancy of the trap density of states.
Resumo:
Reducing carbon dioxide (CO2) to hydrocarbon fuel with solar energy is significant for high-density solar energy storage and carbon balance. In this work, single palladium/platinum (Pd/Pt) atoms supported on graphitic carbon nitride (g-C3N4), i.e. Pd/g-C3N4 and Pt/g-C3N4, acting as photocatalysts for CO2 reduction were investigated by density function theory (DFT) calcu-lations for the first time. During CO2 reduction, the individual metal atoms function as the active sites, while g-C3N4 provides the source of hydrogen (H*) from hydrogen evolution reaction. The complete, as-designed photocatalysts exhibit excellent activity in CO2 reduction. HCOOH is the preferred product of CO2 reduction on the Pd/g-C3N4 catalyst with a rate-determining barrier of 0.66 eV, while the Pt/g-C3N4 catalyst prefers to reduce CO2 to CH4 with a rate-determining barrier of 1.16 eV. In addition, depositing atom catalysts on g-C3N4 significantly enhances the visible light absorption, rendering them ideal for visible light reduction of CO2. Our findings open a new avenue of CO2 reduction for renewable energy supply.
Resumo:
Ion transport in a recently demonstrated promising soft matter solid plastic-polymer electrolyte is discussed here in the context of solvent dynamics and ion association. The plastic-polymer composite electrolytes display liquid-like ionic conductivity in the solid state,compliable mechanical strength (similar to 1 MPa), and wide electrochemical voltage stability (>= 5 V). Polyacrylonitrile (PAN) dispersed in lithium perchlorate (LiClO4)-succinonitrile (SN) was chosen as the model system for the study (abbreviated LiClO4-SN:PAN). Systematic observation of various mid-infrared isomer and ion association bands as a function of temperature and polyme concentration shows an effective increase in trans conformer concentration along with free Li+ ion concentration. This strongly supports the view that enhancement in LiClO4-SN:PAN ionic conductivity over the neat plastic electrolyte (LiClO4-SN) is due to both increase in charge mobility and concentration. The ionic conductivity and infrared spectroscopy studies are supported by Brillouin light scattering. For the LiClO4-SN:PAN composites, a peak at 17 GHz was observed in addition to the normal trans-gauche isomerism (as in neat SN) at 12 GHz. The fast process is attributed to increased dynamics of those SN molecules whose energy barrier of transition from gauche to trans has reduced under influences induced by the changes in temperature and polymer concentration. The observations from ionic conductivity, spectroscopy, and light scattering studies were further supplemented by temperature dependent nuclear magnetic resonance H-1 and Li-7 line width measurements.
Resumo:
Lanthanide complexes of formulation [La(B)(2)(NO3)(3)] (1-3) and [Gd(B)(2)(NO3)(3)] (4-6), where B is a N,N-donor phenanthroline base, namely, 1,10-phenanthroline (phen in 1, 4),dipyrido[3,2-d2',3'-f]quinoxaline (dpq in 2,5) and dipyrido[3,2-a2',3'-c]phenazine (dppz in 3, 6), have been prepared, characterized from physicochemical data, and their photoinduced DNA and protein cleavage activity studied The photocytotoxicity of the dppz complexes 3 and 6 has been studied using HeLa cancer cells. The complexes exhibitligand centered bands in the UV region The dppz complexes show thelowest energy band at 380 nm in N,N-dimethylformamide (DMF) The La(III)complexes are diamagnetic. The Gd(III) complexes (4-6) have magneticmoments that correspond to seven unpaired electrons The complexes are1(.)1 electrolytic in aqueous DMF The dpq and dppz complexes in DMFshow ligand-based reductions. The complexes display moderate binding propensity to calf thymus DNA giving binding constant values in the range of 5.7 x 10(4)-5.8 x 10(5) M-1 with a relative order. 3, 6 (dppz)> 2, 5 (dpq) > 1, 4 (phen) The binding data suggest DNA surface and/or groove binding nature of the complexes. The complexes do not show any hydrolytic cleavage of plasmid supercoiled pUC19 DNA. The dpq and dppz complexes efficiently cleave SC DNA to its nicked circular form onexposure to UV-A light of 365 nm at nanomolar complex concentration. Mechanistic studies reveal the involvement of singlet oxygen (O-1(2)) and hydroxyl radical (HO center dot) as the cleavage active species.The complexes show binding propensity to bovine serum albumin (BSA)protein giving K-BSA values of similar to 10(5) M-1. The dppz complexes 3 and 6 show BSA protein cleavage activity in UV-A light of 365 nm The dppz complexes 3 and 6 exhibit significant photocytotoxicity in HeLa cells giving respective IC50 values of 341 nM and 573 nM in UV-A light of 365 nm for an exposure time of 15 min (IC50 > 100 mu M in dark for both the complexes) Control experiments show significant dark and phototoxicity of the dppz base alone (IC50 = 413 nM in light with 4 h incubation in dark and 116 mu M in dark with 24 h incubation). A significant decrease in the dark toxicity of the dppz base is observedon binding to the lanthanide ions while retaining similar phototoxicity.
Resumo:
The pulse-echo apparatus, designed and constructed by the author, has been used to reinvestigate the elastic properties of the eighteen optical glasses. The elastic constants are correct to 0·5%. The results are compared with the earlier investigation which utilised the optical method. The possible causes for large discrepancies observed are critically and briefly discussed. A qualitative interpretation of the results has been successfully attempted. The acoustic velocity increases with the decrease in lead and barium oxides and with increase in calcium oxide and boron trioxide components.
Resumo:
In this paper, an attempt is made to study the influence of external light waves on the thermoelectric power under strong magnetic field (TPSM) in ultrathin films (UFs), quantum wires (QWs) and quantum dots (QDs) of optoelectronic materials whose unperturbed dispersion relation of the conduction electrons are defined by three and two band models of Kane together with parabolic energy bands on the basis of newly formulated electron dispersion laws in each case. We have plotted the TPSM as functions of film thickness, electron concentration, light intensity and wavelength for UFs, QWs and ODs of InSb, GaAs, Hg1-xCdxTe and In1-xGaxAsyP1-y respectively. It appears from the figures that for UFs, the TPSM increases with increasing thickness in quantum steps, decreases with increasing electron degeneracy exhibiting entirely different types of oscillations and changes with both light intensity and wavelength and these two latter types of plots are the direct signature of light waves on opto-TPSM. For QWs, the opto-TPSM exhibits rectangular oscillations with increasing thickness and shows enhanced spiky oscillations with electron concentration per unit length. For QDs, the opto-TPSM increases with increasing film thickness exhibiting trapezoidal variations which occurs during quantum jumps and the length and breadth of the trapezoids are totally dependent on energy band constants. Under the condition of non-degeneracy, the results of opto-TPSM gets simplified into the well-known form of classical TPSM equation which the function of three constants only and being invariant of the signature of band structure.
Resumo:
An atmospheric radio noise burst represents the radiation received from one complete lightning flash at the frequency to which a receiver is tuned and within the receiver bandwidth. At tropical latitudes, the principal source of interference in the frequency range from 0.1 to 10 MHz is the burst form of atmospheric radio noise. The structure of a burst shows several approximately rectangular pulses of random amplitude, duration and frequency of recurrence. The influence of the noise on data communication can only be examined when the value of the number of pulses crossing a certain amplitude threshold per unit time of the noise burst is known. A pulse rate counter designed for this purpose has been used at Bangalore (12°58′N, 77°35′E) to investigate the pulse characteristics of noise bursts at 3 MHz with a receiver bandwidth of 3.3 kHz/6d B. The results show that the number of pulses lying in the amplitude range between peak and quasi-peak values of the noise bursts and the burst duration corresponding to these pulses follow log normal distributions. The pulse rates deduced therefrom show certain correlation between the number of pulses and the duration of the noise burst. The results are discussed with a view to furnish necessary information for data communication.
Resumo:
Counting-rate meters normally used for finding pulse frequencies are sluggish in their response to any rapid change in the pulse repetition frequency (P.R.F.). An instrument is described which measures each pulse interval and provides immediately afterwards an output voltage proportional to the reciprocal of interval duration. A response to a change in the P.R.F. as rapidly as is physically possible is obtained. The instrument has wide application in low level radiation detection and in several other fields especially for rapidly varying counting-rates.
Resumo:
Starting point in the European individualistic copyright ideology is that an individual author creates a work and controls the use of it. However, this paper argues that it is (and has always been) impossible to control the use of works after their publication. This has also been acknowledged by the legislator, who has introduced collective licensing agreements because of this impossibility. Since it is impossible to rigorously control the use of works this writing "Rough Justice or Zero Tolerance - Reassessing the Nature of Copyright in Light of Collective Licensing" examines what reality of copyright is actually about. Finding alternative (and hopefully more "true") ways to understand copyright helps us to create alternative solutions in order to solve possible problems we have as it comes e.g. to use of content in online environment. The paper makes a claim that copyright is actually about defining negotiation points for different stakeholders and that nothing in the copyright reality prevents us from defining e.g. a new negotiation point where representatives of consumers would meet representatives of right holders in order to agree on the terms of use for certain content types in online environment.
Resumo:
In smaller countries where the key players in construction IT development tend to know each other personally and where public R&D funding is concentrated to a few channels, IT roadmaps and strategies would seem to have a better chance of influencing development than in the bigger industrial countries. In this paper Finland and the RATAS-project is presented as a historical case illustrating such impact. RATAS was initiated as a construction IT roadmap project in 1985, involving many of the key organisations and companies active in construction sector development. Several of the individuals who took an active part in the project have played an important role in later developments both in Finland and on the international scene. The central result of RATAS was the identification of what is nowadays called Building Information Modelling (BIM) technology as the central issue in getting IT into efficient use in the construction sector. BIM, which earlier was referred to as building product modelling, has been a key ingredient in many roadmaps since and the subject of international standardisation efforts such as STEP and IAI/IFCs. The RATAS project can in hindsight be seen as a forerunner with an impact which also transcended national borders.
Resumo:
A two-stage pulse tube cryocooler (PTC) which produces a no-load temperature of similar to 2.5 K in its second stage at an operating frequency of 1.6 Hz has been designed and fabricated. The second stage of the system provides a refrigeration power of similar to 250 mW at 5.0 K. The system uses stainless steel meshes (mesh size 200) along with lead (Pb) granules and combinations of Pb, Er3Ni, and HoCu2 as the first and second stage regenerator materials, respectively. Experimental studies have been carried out on different pulse tube configurations by varying the dimensions of the pulse tubes and regenerators to arrive at the best one, which leads to the lowest no-load second stage cold head temperature. Using this configuration, detailed experimental studies have been conducted by varying the volume percentage ratios of the second stage regenerator materials such as HoCu2, Er3Ni, and Pb (with an average grain size of similar to 250 mu m). This article presents the results of our experimental studies on cryocoolers with the regenerator material arranged in layered structures. Comparative studies have also been presented for specific cases where the regenerator materials are arranged as a homogeneous mixture in the second stage. The experimental results clearly indicate that the design of PTCs should use only layered structures of regenerator materials and not homogenous mixtures.
Resumo:
An indirect mechanism of light scattering from spin-waves in ferromagnetic insulators via two-magnon one-phonon process is proposed. Following linear response theory, an expression has been derived for the differential scattering cross-section in the mean-field-approximation.