938 resultados para Late early Oligocene
Resumo:
The Owen Ridge south of Oman represents oceanic crust that was uplifted by compressional tectonic forces in the early Miocene. Build-out of the Indus Fan led to deposition of a thick sequence of turbidites over the site of the Ridge during the late Oligocene and early Miocene. Early Miocene uplift of the Ridge led to a pelagic cap of nannofossil chalks. Two short sequences of turbidites from the pre- and syn-uplift phases were chosen for detailed grain size analysis. The upper Oligocene section at Site 731 is composed of thin (centimeter-decimeter scale) graded mud turbidites separated by relatively thick (decimeter-meter scale) intervals of homogeneous, non-bioturbated clayey siltstones. These finer intervals are unusually silt-rich (about 60%) for ungraded material and were probably deposited as undifferentiated muds from a series of turbidity current tails. By contrast, the lower Miocene section at Site 722 is comprised of a sequence of interbedded turbidites and hemipelagic carbonates. Sharp-based silt turbidites are overlain by burrow-mottled marly nannofossil chalks. The Oligocene sequence may have accumulated in an overbank setting on the middle fan - the local topographic position favoring frequent deposition from turbidity current tails and occasional deposition from the body of a turbidity flow. Uplift of the Ridge in the early Miocene led to pelagic carbonate deposition interrupted only by turbidity currents capable of overcoming a topographic barrier. Further uplift eventually led to entirely pelagic carbonate deposition.
Resumo:
Deepwater circulation plays an important role in climate modulation through its redistribution of heat and salt and its control of atmospheric CO2. Oppo and Fairbanks (1987, doi:10.1016/0012-821X(87)90183-X) showed that the Southern Ocean is an excellent monitor of deepwater circulation changes for two reasons: (1) the Southern Ocean is a mixing reservoir for incoming North Atlantic Deep Water and recirculated water from the Pacific and Indian oceans; and (2) the nutrient/delta13C tracers of deepwater are not significantly changed by surficial processes within the Southern Ocean. We can extend these principles to the late Miocene because tectonic changes in the Oligocene and early and middle Miocene developed near-modern basinal configurations. However, on these time scales, changes in the oceanic carbon reservoir and mean ocean nutrient levels also affect the delta13C differences between ocean basins. From 9.8 to 9.3 Ma, Southern Ocean delta13C values oscillated between high North Atlantic values and low Pacific values. The Southern Ocean recorded delta13C values similar to Pacific values from 9.2 to 8.9 Ma, reflecting a low contribution of Northern Component Water (NCW). The delta13C differences between the NCW and Pacific Outflow Water (POW) end-members were low from 8.9 to 8.0 Ma, making it difficult to discern circulation patterns. NCW production may have completely shutdown at 8.6 Ma, allowing Southern Component Water (SCW) to fill the North Atlantic and causing the delta13C values in the North Atlantic, Pacific, and Southern oceans to converge. Deepwater delta13C patterns resembling the modern distributions evolved by 7.0 Ma: delta13C values were near 1.0 per mil in the North Atlantic; 0.0 per mil in the Pacific; and 0.5 per mil in the Southern Ocean. Development of near-modern delta13C distributions by 7.0 Ma resulted not only from an increase in NCW flux but also from an increase in deepwater nutrient levels. Both of these processes increased the delta13C difference between the North Atlantic and Pacific oceans. Deepwater circulation patterns similar to today's operated as early as 9.8 Ma, but were masked by the lower nutrient/delta13C differences. During the late Miocene, 'interglacial' intervals prevailed during intervals of NCW production, while 'glacial' intervals occurred during low NCW production.
Resumo:
Benthic oxygen and carbon isotopic results from a depth transect on Maud Rise, Antarctica, provide the first evidence for Warm Saline Deep Water (WSDW) in the Paleogene oceans. Distinct reversals occur in the oxygen isotopic gradient between the shallower Hole 689B (Eocene depth ~1400 m; present-day depth 2080 m) and the deeper Hole 690B (Eocene depth ~2250 m; present-day depth 2914 m). The isotopic reversals, well developed by at least 46 Ma (middle middle Eocene), existed for much of the remaining Paleogene. We do not consider these reversals to be artifacts of differential diagenesis between the two sites or to have resulted from other potentially complicating factors. This being so, the results show that deep waters at Hole 690B were significantly warmer than deep waters at the shallower Hole 689B. A progressive decrease and eventual reversal in benthic to planktonic delta18O gradients in Hole 690B, demonstrate that the deeper waters became warmer relative to Antarctic surface waters during the Eocene. The warmer deep waters of the Paleogene are inferred to have been produced at middle to low latitudes, probably in the Tethyan region which contained extensive shallow-water platforms, ideal sites for the formation of high salinity water through evaporative processes. The ocean during the Eocene, and perhaps the Paleocene, is inferred to have been two-layered, consisting of warm, saline deep waters formed at low latitudes and overlain by cooler waters formed at high latitudes. This thermospheric ocean, dominated by halothermal circulation we name Proteus. The Neogene and modern psychrospheric ocean Oceanus is dominated by thermohaline circulation of deep waters largely formed at high latitudes. An intermediate condition existed during the Oligocene, with a three-layered ocean that consisted of cold, dense deep waters formed in the Antarctic (Proto-AABW), overlain by warm, saline deep waters from low latitudes, and in turn overlain by cool waters formed in the polar regions. This we name Proto-oceanus which combined both halothermal and thermohaline processes. The sequence of high latitude, major, climatic change inferred from the oxygen isotopic records is as follows: generally cooler earlier Paleocene; warming during the late Paleocene; climax of Cenozoic warmth during the early Eocene and continuing into the early middle Eocene; cooling mainly in a series of steps during the remainder of the Paleogene. Superimposed upon this Paleogene pattern, the Paleocene/Eocene boundary is marked by a brief but distinct warming that involved deep to surface waters and a reduction in surface to deep carbon and oxygen isotopic gradients. This event coincided with major extinctions among the deep-sea benthic foraminifers as shown by Thomas (1990 doi:10.2973/odp.proc.sr.113.123.1990). Salinity has played a major role in deep ocean circulation, and thus paleotemperatures cannot be inferred directly from the oxygen isotopic composition of Paleogene benthic foraminifers without first accounting for the salinity effect.
Latest Oligocene through early middle Miocene diatom biostratigraphy of the eastern tropical Pacific
Resumo:
Study of DSDP Sites 71, 77, and 495 has allowed the development of a refined diatom biostratigraphy for the latest Oligocene through early middle Miocene of the eastern tropical Pacific which is well correlated to the low-latitude zonations for planktonic foraminifers, coccoliths, and radiolarians. Six zones and 7 subzones are proposed, and correlation with high-latitude diatoms zonations for the North Pacific, the Norwegian Sea, and the Southern Ocean is suggested by the discovery of selected diatoms in these tropical sediments which were previously thought to be restricted to high latitudes. Six new species and one new variety of diatoms which are stratigraphically useful are proposed : Actinocyclus hajosiae, n. sp., A. radionovae, n. sp., Coscinodiscus blysmos, n. sp., C. praenodulifer, n. sp., Craspedodiscus rydei, n. sp., Thalassiosira bukryi, n. sp., and Coscinodiscus lewisianus var. robustus n. var.
Resumo:
The oxygen- and carbon-isotope compositions of planktic and benthic foraminifera and calcareous nannofossils from Middle Oligocene-Early Miocene Equatorial Atlantic sediments (DSDP Site 354) indicate two important paleoceanographic changes, in the Late Oligocene (foraminiferal Zone P.21) and in the Early Miocene (foraminiferal Zone N.5). The first change, reflected by a delta18O increase of 1.45? in Globigerina venezuelana, affected only intermediate pelagic and not surface, deep or bottom waters. The second change affected surface and intermediate waters, whereas deep and bottom waters showed only minor fluctuations. In the case of the former the isotope effect of the moderate ice accumulation on the Antarctic continent is amplified in the Equatorial Atlantic by changes in the circulation pattern. The latter paleoceanographic change, reflected by a significant increase in 18O in both planktic and benthic forms (about 1.0? and 0.5?, respectively), may have been caused by ice volume increase and temperature decrease. Both oxygen- and carbon-isotope compositions indicate a marked depth-habitat stratification for planktic foraminifera and calcareous nannofossils. Three different dwelling groups are recognized: shallow Globigerinoides, Globoquadrina dehiscens, Globorotalia mayeri and nannofossils; intermediate Globigerina venezuelana; and deep Catapsydrax dissimilis. The comparison of foraminifera and calcareous nannofossils suggests that the isotopic compositions of nannofossils are generally controlled by the same parameters which control the isotopic composition of shallow-dwelling foraminifera, but the former are more enriched in 18O.
Resumo:
A major deterioration in global climate occurred through the Eocene-Oligocene time interval, characterized by long-term cooling in both terrestrial and marine environments. During this long-term cooling trend, however, recent studies have documented several short-lived warming and cooling phases. In order to further investigate high-latitude climate during these events, we developed a high-resolution calcareous nannofossil record from ODP Site 748 Hole B for the interval spanning the late middle Eocene to the late Oligocene (~42 to 26 Ma). The primary goals of this study were to construct a detailed biostratigraphic record and to use nannofossil assemblage variations to interpret short-term changes in surface-water temperature and nutrient conditions. The principal nannofossil assemblage variations are identified using a temperate-warm-water taxa index (Twwt), from which three warming and five cooling events are identified within the middle Eocene to the earliest Oligocene interval. Among these climatic trends, the cooling event at ~39 Ma (Cooling Event B) is recorded here for the first time. Variations in fine-fraction d18O values at Site 748 are associated with changes in the Twwt index, supporting the idea that significant short-term variability in surface-water conditions occurred in the Kerguelen Plateau area during the middle and late Eocene. Furthermore, ODP Site 748 calcareous nannofossil paleoecology confirms the utility of these microfossils for biostratigraphic, paleoclimatic, and paleoceanographic reconstructions at Southern Ocean sites during the Paleogene.
Resumo:
Several geoscientific projects in the last decade led to a marked increase of radiocarbon dates in Mecklenburg-Vorpommern and in neighbouring areas. The studies were mostly focussed on the genesis of the Baltic Basin and the last termination. In this Paper, a regional collection of 271 radiocarbon dates of the late Pleistocene and early Holocene (ca. 50,000-8,000 14C yr BP) is presented. The dates were calibrated, correlate, and assessed with regard to their credibility. The evaluation of the data is focussed on problems of regional palaeogeography. The age of the last Weichselian deglaciation (deglaciation after the Mecklenburg Advance) is assumed to be around 14,000 14C yr BP through radiocarbon dates from the Pomeranian Bay. This data is ca. 1,000 years older compared to former views. On the other hand, the database allows the dating of late Pleistocene basin sequences from the Baltic coast, This indicates three stratigraphic units for basin areas 0-15 m above sea level - glaciolacustrine sedimentation in the late Pleniglacial, lacustrine and telmatic sedimentation as well as soil formation in the early Lateglacial and Alleroed and aeolian sedimentation in the Younger Dryas. The Younger Dryas in the huge Mecklenburg Bay-Darss Basin NE of Rostock is characterised by lacustrine sedimentation ca. 20 m below sea level ("Baltic Ice Lake"), and by aeolian sedimentation above sea level.
Resumo:
Benthic forammifers in the size-fraction greater than 0.073 mm were studied in 88 Paleocene to Pleistocene samples from Deep Sea Drilling Project Site 525 (Hole 525A, Walvis Ridge, eastern south Atlantic). Clustering of the samples on the basis of the 86 most abundant foramimfers (in total, 331 taxa were identified) allowed separating two major assemblage zones: the Paleocene to Eocene interval, and the Oligocene to Pleistocene interval. Each of these, in turn, were subdivided into three minor subzones as follows: lower upper Paleocene (approx. 62.4 to 57 8 Ma); upper upper Paleocene (56.6 to 56 2 Ma), lower and middle Eocene (55.3 to 46 8 Ma); upper Oligocene to middle Miocene (25.3 to 16 Ma), middle Miocene to Pliocene (15.7 to 4.2 Ma), and lower Pleistocene (0.4 to 0.02 Ma), with only minor differences with the previous zone. Some very abundant taxa span most of the column studies (Bolivina huneri, Cassidulina subglobosa, Eponides bradyi, E. weddellensis, Gavelinella micra, Oridorsalis umbonatus, etc.). Several of the faunal breaks recorded coincide with conspicuous minima in the specific diversity curve, thus suggesting that the corresponding turnovers signal the final stages of periods of faunal impoverishment. At least one major bottomwater temperature drop (as derived from delta18O data) is synchronous with a decrease in the forammiferal specific diversity. On the other hand, a specific diversity maximum in the middle Miocene might be associated with a delta13C increase at approx 16 to 12 Ma. Highest foraminiferal abundances (up to 600-800 individuals per gram of dry sediment) occurred in the late Paleocene and in the early Pleistocene, in coincidence with the lowest diversity figures calculated. The magnitude of the most important faunal turnover recorded, between the middle Eocene and the late Oligocene, is magnified in our data set by the large hiatus which separates the middle Eocene from the upper Oligocene sediments. Considerably smaller overturns occurred within the late Paleocene (in coincidence with changes in the specific diversity, absolute abundance of forammiferal tests, and delta13C), and in the middle Miocene (in coincidence with a specific diversity maximum and a delta13C excursion). New reformation on the morphology and the stratigraphic ranges of several species is furnished. For all the taxa recorded the number of occurrences, total number of individuals identified and first and last appearances are listed.
Resumo:
Stratigraphic assemblages of Quaternary through early Eocene benthic foraminifers were recovered among 10 Peru margin drill sites. Various hiatuses and intervals barren in foraminifers characterize the sections, but numerous samples contain abundant, well-preserved benthic foraminifers. Bathymetry of the extant species and California-based estimates of the paleobathymetry of the extinct species permit recognition of Quaternary sea-level fluctuations between shelf and upper bathyal depths that produced vertical migrations of oxygenated and low-oxygen habitats at the six shallow sites. Assemblages from lower-slope sites at about 9° and 11°S indicate a general subsidence of the continental margin from shelf or upper bathyal depths in Eocene time to the present lower bathyal depths. Data from 11°S suggest a major part of this subsidence occurred in late Oligocene to early Miocene time. Downslope-transported shelf specimens, particularly the small biserial species, Bolivina costata and B. vaughani, are major contributors to these lower bathyal assemblages from the middle Miocene through Quaternary time.
Resumo:
The Late Miocene-Early Pliocene paleoclimatic history has been evaluated for a deep drilled sediment sequence at Deep Sea Drilling Project Site 281 and a shallow water marine sediment sequence at Blind River, New Zealand, both of which lay within the Subantarctic water mass during the Late Miocene. A major, faunally determined, cooling event within the latest Miocene at Site 281 and Blind River coincides with oxygen isotopic changes in benthonic foraminiferal composition at DSDP Site 284 considered by Shackleton and Kennett (1975) to indicate a significant increase in Antarctic ice sheet volume. However, at Site 281 benthonic foraminiferal oxygen isotopic changes do not record such a large increase in Antarctic ice volume. It is possible that the critical interval is within an unsampled section (no recovery) in the latest Miocene. Two benthonic oxygen isotopic events in the Late Miocene (0.5 ? and 1 ? in the light direction) may be useful as time-stratigraphic markers. A permanent, negative, carbon isotopic shift at both Site 281 and Blind River allows precise correlations to be made between the two sections and to other sites in the Pacific region. Close interval sampling below the carbon shift at Site 281 revealed dramatic fluctuations in surface-water temperatures prior to a latest Miocene interval of refrigeration (Kapitean) and a strong pulse of dissolution between 6.6 and 6.2 +/- 0.1 m.y. which may be related to a fundamental geochemical change in the oceans at the time of the carbon shift (6.3-6.2 m.y.). No similar close interval sampling at Blind River was possible because of a lack of outcrop over the critical interval. Paleoclimatic histories from the two sections are very similar. Surface water temperatures and Antarctic ice-cap volume appear to have been relatively stable during the late Middle-early Late Miocene (early-late Tongaporutuan). By 6.4 m.y. cooler conditions prevailed at Site 281. Between 6.3 and 6.2 -+ 0.1 m.y. the carbon isotopic shift occurred followed, within 100,000 yr, by a distinct shallowing of water depths at Blind River. The earliest Pliocene (Opoitian) is marked by increasing surface-water temperatures.
Resumo:
A multiproxy analysis based on planktic foraminiferal abundances, derived SSTs, and stable planktic isotopes measurements together with alkenone abundances and Uk'37 SSTs was performed on late MIS 6 to early MIS 5d sediment recovered from Site 975 (ODP Leg 161) in the South Balearic Islands basin (Western Mediterranean) with emphasis on reconstructing the climate progression of the last interglacial period. A number of abrupt climate changes related to alternative influence of nutrient rich northern and oligotrophic southern water masses were revealed. Heinrich event 11 and cooling events C27, C26, C25, C24, C23, which have been previously described in the North Atlantic, were recognized. However, in comparison to the eastern North Atlantic mid-latitude region, events C27 and C26 at Site 975 seem to be significantly more pronounced. Together with evidence of a two-phase climate optimum with maximum SSTs reached during its later phase, this implies a close similarity in climate dynamics between the Western Mediterranean and the Nordic seas. We propose that postglacial effects in the Nordic seas had an influence on the western Mediterranean climate via atmospheric circulation and that these effects competed with the insolation force.