579 resultados para Landsat
Resumo:
O presente trabalho teve como objetivo avaliar as variações de uso e ocupação do solo entre os cenários de 2000 e 2011 da microbacia do córrego Monte Belo – Botucatu (SP). Para tanto, utilizou-se de geotecnologias, sendo a integração de informações realizada no Sistema de Informações Geográficas (SIG) - IDRISI, aliada ao uso de cartas digitais do IBGE, escala 1:50.000, além de fotografias aéreas (2000) e imagens de satélite LANDSAT - 5 (2011). Através dos dados obtidos, foram detectadas três classes de uso do solo sendo que em 2000, elas correspondem ao reflorestamento, pastagem e mata ciliar e em 2011, reflorestamento, mata ciliar e solo exposto. Desta forma, pode-se concluir que as ferramentas de análise baseadas em SIGs trazem a possibilidade de analisar as variações no espaço e no tempo além de resultar em informações que podem subsidiar o planejamento da microbacia do Córrego Monte Belo.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Restinga of Marambaia is an emerged sand bar located between the Sepetiba Bay and the South Atlantic Ocean, on the south-east coast of Brazil. The objective of this study was to observe the geomorphologic evolution of the coastal zone of the Restinga of Marambaia using multitemporal satellite images acquired by multisensors from 1975 to 2004. The images were digitally segmented by a region growth algorithm and submitted to an unsupervised classification procedure (ISOSEG) followed by a raster edit based on visual interpretation. The image time-series showed a general trend of decrease in the total sand bar area with values varying from 80.61km(2) in 1975 to 78.15km(2) in 2004. The total area calculation based on the 1975 and 1978 Landsat MSS data was shown to be super-estimated in relation to the Landsat TM, Landsat ETM+, and CBERS-2 CCD data. These differences can also be associated to the relatively poorer spatial resolution of the MSS data, nominally 79m, against the 20m of the CCD data and 30m of the TM and ETM+ data. For the estimates of the width in the central portion of the sand bar the variation was from 158m (1975) to 100m (2004). The formation of a spit in the northern region of the study area was visually observed. The area of the spit was estimated, with values varying from 0.82km(2) (1975) to 0.55km(2) (2004).
Resumo:
The aim of this study was to characterize and compare the spectral behavior of different soil classes obtained by orbital and terrestrial sensors. For this, an area of 184 ha in Rafard (SP) Brazil was staked on a regular grid of 100x100 m and soil samples were collected and georeferenced. After that, soil spectral curves were obtained with IRIS sensor and the sample points were overlaid at Landsat and ASTER images for spectral data collection. The soil samples were classified and mean soil curves for all sensors were generated by soil classes. The soil classes were differentiated by texture, organic matter and total iron for all sensors studied, the orbital sensors despite the lower spectral resolution, maintained the characteristics of the soil and the curves of reflectance intensity.
Resumo:
It is known that the presence of large masses of vegetation is a factor that can influence the microclimate of a region. In this paper we analyzed the correlation between leaf area index (LAI) and land surface temperature (LST), both estimated from remote sensing images from Landsat-5 TM in an area of eucalyptus plantation, and these estimates were compared to the observed data. The correlation between LAI and LST was not significant (16%), which indicates that there is no necessarily a direct influence of vegetation in the local temperature. The comparison between estimated and observed data shows that the application of remote sensing techniques in the estimative of interested variables is efficient, because the estimatives followed consistently the observed values.
Resumo:
This work aims to study the urban heat island on North region of Parana state, Brazil and the influence of land use and urban settlements on the intensity and frequency of occurrence of these events. Through atmospheric modeling whith WRF/Chem model two simulations were made with different land and use files, one with the original land use another obtained from a composition of MODIS-Landsat imagery. The simulations showed good skills compared to observed data. Urban areas presented higher temperatures. Landsat land use has represented better urban heat islands (UHI), the gradient between urban and rural areas was well demonstrated and the correlation coefficient was above 0.92. The model underestimated the maximum values and overestimated the minimum compared with observed data in both simulations.
Resumo:
L’alta risoluzione nel telerilevamento termico (Thermal Remote Sensing) da aereo o satellitare si rivela molto importante nell’analisi del comportamento termico delle superfici, in particolare per lo studio dei fenomeni climatici locali dello spazio urbano. La stato termico dell'ambiente urbano è oggi motivo di grande interesse per ricercatori, organi istituzionali e cittadini. Uno dei maggiori campi di studio del comportamento termico urbano interessa il problema energetico: la riduzione dei consumi e delle emissioni di CO2 è un obiettivo primario da perseguire per uno sviluppo sostenibile, spesso supportato da criteri legislativi e progetti comunitari. Su scala differente e con caratteristiche differenti, un altro degli argomenti che scuote da anni e con notevole interesse la ricerca scientifica, è il fenomeno termico urbano che prende il nome di isola di calore; questa si sviluppa non solo in conseguenza al calore sensibile rilasciato da attività antropiche, ma anche a causa della sempre maggiore conversione del territorio rurale in urbanizzato (inurbamento), con conseguente riduzione del fenomeno dell’evapotraspirazione. Oggetto di questa dissertazione è lo studio del comportamento termico delle superfici in ambito urbano, sperimentato sulla città di Bologna. Il primo capitolo si interessa dei principi e delle leggi fisiche sui quali è basato il telerilevamento effettuato nelle bende spettrali dell’infrarosso termico. Viene data una definizione di temperatura radiometrica e cinematica, tra loro legate dall’emissività. Vengono esposti i concetti di risoluzione (geometrica, radiometrica, temporale e spettrale) dell’immagine termica e viene data descrizione dei principali sensori su piattaforma spaziale per l’alta risoluzione nel TIR (ASTER e Landsat). Il secondo capitolo si apre con la definizione di LST (Land Surface Temperature), parametro del terreno misurato col telerilevamento, e ne viene descritta la dipendenza dal flusso della radiazione in atmosfera e dalle condizioni di bilancio termico della superficie investigata. Per la sua determinazione vengono proposti metodi diversi in funzione del numero di osservazioni disponibili nelle diverse bande spettrali dell’IR termico. In chiusura sono discussi i parametri che ne caratterizzano la variabilità. Il capitolo terzo entra nel dettaglio del telerilevamento termico in ambito urbano, definendo il fenomeno dell’Urban Heat Island su tutti i livelli atmosferici interessati, fornendo un quadro di operabilità con gli strumenti moderni di rilievo alle differenti scale (analisi multiscala). Un esempio concreto di studio multiscala dei fenomeni termici urbani è il progetto europeo EnergyCity, volto a ridurre i consumi energetici e le emissioni di gas serra di alcune città del centro Europa. Il capitolo quarto riporta la sperimentazione condotta sull’isola di calore urbana della città di Bologna tramite immagini ASTER con risoluzione spaziale 90 m nel TIR e ricampionate a 15 m dal VIS. Lo studio dell’isola di calore si è effettuata a partire dal calcolo della Land Surface Temperature utilizzando valori di emissività derivati da classificazione delle superfici al suolo. Per la validazione dei dati, in alternativa alle stazioni di monitoraggio fisse dell’ARPA, presenti nell’area metropolitana della città, si è sperimentato l’utilizzo di data-loggers per il rilievo di temperatura con possibilità di campionamento a 2 sec. installati su veicoli mobili, strumentati con ricevitori GPS, per la misura dei profili di temperatura atmosferica near-ground lungo transetti di attraversamento della città in direzione est-ovest.
Resumo:
Abstract L’utilizzo dei dati satellitari per la gestione dei disastri naturali è fondamentale nei paesi in via di sviluppo, dove raramente esiste un censimento ed è difficile per i governi aggiornare le proprie banche dati con le tecniche di rilevamento e metodi di mappatura tradizionali che sono entrambe lunghe e onerose. A supporto dell’importanza dell’impiego del telerilevamento e per favorirne l’uso nel caso di catastrofi, vi è l’operato di diverse organizzazioni internazionali promosse da enti di ricerca, da agenzie governative o da organismi sopranazionali, le quali svolgono un lavoro di cruciale valore, fornendo sostegno tecnico a chi si occupa di far giungere alle popolazioni colpite gli aiuti umanitari e i soccorsi nel più breve tempo possibile. L’attività di tesi è nata proprio dalla collaborazione con una di esse, ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action), organizzazione no-profit, fondata dal Politecnico di Torino e SiTI (Istituto Superiore sui Sistemi Territoriali per l’Innovazione), la quale a sua volta collabora con il WFP (World Food Programme) delle Nazioni Unite, realizzando cartografie speditive necessarie per la valutazione delle conseguenze di un evento catastrofico, attraverso l’impiego di dati acquisiti da satellite. Su questo tema si è inserito il presente lavoro che ha come obiettivo quello di dimostrare la valenza dei dati telerilevati, siano essi di tipo ottico o Radar, nel caso di alcuni dei disastri naturali più catastrofici, le alluvioni. In particolare è stata studiata la vulnerabilità del Bangladesh, il quale annualmente si trova ad affrontare eventi alluvionali, spesso di grave intensità. Preliminarmente allo studio, è stata condotta una ricerca bibliografica al fine di avere una buona conoscenza dell’area sia in termini geografici e fisici che di sviluppo e tipologia di urbanizzazione. E’stata indagata in particolare l’alluvione che ha colpito il paese nel Luglio del 2004, attraverso delle immagini satellitari multispettrali, in particolare Landsat 7, per un inquadramento pre-evento, ed ASTER per studiare la situazione a distanza di tre mesi dall’accaduto (immagine rilevata il 20 Ottobre 2004). Su tali immagini sono state condotte delle classificazioni supervisionate con il metodo della massima verosimiglianza che hanno portato la suddivisione del territorio in quattro classi di destinazione d’uso del suolo: urbano (Build-up), campi e vegetazione (Crops&Vegetation), sabbia e scavi (Sand&Excavation), idrografia e zone alluvionate (Water). Dalla sperimentazione è emerso come tali immagini multispettrali si prestino molto bene per l’analisi delle differenti caratteristiche del territorio, difatti la validazione condotta sulla mappa tematica derivata dall’immagine Landsat 7 ha portato ad un’accuratezza del 93% circa, mentre la validazione dell’immagine ASTER è stata solo di tipo qualitativo, in quanto, considerata l’entità della situazione rilevata, non è stato possibile avere un confronto con dei punti da assumere come verità a terra. Un’interpretazione della mappa tematica derivante dalla classificazione dell’immagine ASTER è stata elaborata incrociandola in ambiente GIS con dati forniti dal CEGIS (Center for Environmental and Geographic Information Services) riguardanti il landuse della zona in esame; da ciò è emerso che le zone destinate alla coltivazione del riso sono più vulnerabili alle inondazioni ed in particolare nell’Ottobre 2004 il 95% delle aree esondate ha interessato tali colture. Le immagini ottiche presentano un grosso limite nel caso delle alluvioni: la rilevante copertura nuvolosa che spesso accompagna siffatti eventi impedisce ai sensori satellitari operanti nel campo dell’ottico di rilevare il territorio, e per questo di frequente essi non si prestano ad essere impiegati per un’indagine nella fase di prima emergenza. In questa circostanza, un valido aiuto giunge dall’impiego di immagini Radar, le quali permettono osservazioni ad ogni ora del giorno e della notte, anche in presenza di nuvole, rendendole di fondamentale importanza nelle situazioni descritte. Per dimostrare la validità di questi sensori si sono analizzati due subset derivanti da un mosaico di immagini della nuova costellazione italiana ad alta risoluzione CosmoSkymed: il primo va dalla città di Dhaka al Golfo del Bengala ed il secondo copre la zona più a Nord nel distretto di Sylhet. Dalla sperimentazione condotta su tali immagini radar, che ha comportato come ovvio problematiche del tutto differenti rispetto alle elaborazioni tradizionalmente condotte su immagini nel campo dell’ottico, si è potuto verificare come l’estrazione dei corpi d’acqua e più in generale dell’idrografia risulti valida e di veloce computazione. Sono emersi tuttavia dei problemi, per esempio per quanto riguarda la classificazione dell’acqua in presenza di rilievi montuosi; tali complicazioni sono dovute alla presenza di zone d’ombra che risultano erroneamente assegnate alla classe water, ma è stato possibile correggere tali errori di attribuzione mascherando i rilievi con l’ausilio di una mappa delle pendenze ricavata da modelli di elevazione SRTM (Shuttle Radar Topographic Mission). La validazione dei risultati della classificazione, condotta con un grande numero di check points, ha fornito risultati molto incoraggianti (ca. 90%). Nonostante le problematiche riscontrate, il Radar, in sé o in accoppiamento con altri dati di diversa origine, si presta dunque a fornire in breve tempo informazioni sull’estensione dell’esondazione, sul grado di devastazione, sulle caratteristiche delle aree esondate, sulle vie di fuga più adatte, diventando un’importante risorsa per chi si occupa di gestire l’emergenza in caso di eventi calamitosi. L’integrazione con i dati di tipo ottico è inoltre essenziale per pervenire ad una migliore caratterizzazione del fenomeno, sia in termini di change detection che di monitoraggio post-evento.
Resumo:
Auf einer drei Anbauperioden umfassenden Ground Truth Datenbasis wird der Informationsgehalt multitemporaler ERS-1/-2 Synthetic Aperture Radar (SAR) Daten zur Erfassung der Arteninventare und des Zustandes landwirtschaftlich genutzter Böden und Vegetation in Agrarregionen Bayerns evaluiert.Dazu wird ein für Radardaten angepaßtes, multitemporales, auf landwirtschaftlichen Schlägen beruhendes Klassifizierungsverfahren ausgearbeitet, das auf bildstatistischen Parametern der ERS-Zeitreihen beruht. Als überwachte Klassifizierungsverfahren wird vergleichend der Maximum-Likelihood-Klassifikator und ein Neuronales-Backpropagation-Netz eingesetzt. Die auf Radarbildkanälen beruhenden Gesamtgenauigkeiten variieren zwischen 75 und 85%. Darüber hinaus wird gezeigt, daß die interferometrische Kohärenz und die Kombination mit Bildkanälen optischer Sensoren (Landsat-TM, SPOT-PAN und IRS-1C-PAN) zur Verbesserung der Klassifizierung beitragen. Gleichermaßen können die Klassifizierungsergebnisse durch eine vorgeschaltete Grobsegmentierung des Untersuchungsgebietes in naturräumlich homogene Raumeinheiten verbessert werden. Über die Landnutzungsklassifizierung hinaus, werden weitere bio- und bodenphysikalische Parameter aus den SAR-Daten anhand von Regressionsmodellen abgeleitet. Im Mittelpunkt stehen die Paramter oberflächennahen Bodenfeuchte vegetationsfreier/-armer Flächen sowie die Biomasse landwirtschaftlicher Kulturen. Die Ergebnisse zeigen, daß mit ERS-1/-2 SAR-Daten eine Messung der Bodenfeuchte möglich ist, wenn Informationen zur Bodenrauhigkeit vorliegen. Hinsichtlich der biophysikalischen Parameter sind signifikante Zusammenhänge zwischen der Frisch- bzw. Trockenmasse des Vegetationsbestandes verschiedener Getreide und dem Radarsignal nachweisbar. Die Biomasse-Informationen können zur Korrektur von Wachstumsmodellen genutzt werden und dazu beitragen, die Genauigkeit von Ertragsschätzungen zu steigern.
Resumo:
ZUSAMMENFASSUNG Langzeitbeobachtungsstudien zur Landschaftsdynamik inSahelländern stehen generell einem defizitären Angebot anquantitativen Rauminformationen gegenüber. Der in Malivorgefundene lokal- bis regionalräumliche Datenmangelführte zu einer methodologischen Studie, die die Entwicklungvon Verfahren zur multi-temporalen Erfassung und Analyse vonLandschaftsveränderungsdaten beinhaltet. Für den RaumWestafrika existiert in großer Flächenüberdeckunghistorisches Fernerkundungsmaterial in Form hochauflösenderLuftbilder ab den 50er Jahren und erste erdbeobachtendeSatellitendaten von Landsat-MSS ab den 70er Jahren.Multitemporale Langzeitanalysen verlangen zur digitalenReproduzierbarkeit, zur Datenvergleich- undObjekterfaßbarkeit die a priori-Betrachtung derDatenbeschaffenheit und -qualität. Zwei, ohne verfügbare, noch rekonstruierbareBodenkontrolldaten entwickelte Methodenansätze zeigen nichtnur die Möglichkeiten, sondern auch die Grenzen eindeutigerradiometrischer und morphometrischerBildinformationsgewinnung. Innerhalb desÜberschwemmungsgunstraums des Nigerbinnendeltas im ZentrumMalis stellen sich zwei Teilstudien zur Extraktion vonquantitativen Sahelvegetationsdaten den radiometrischen undatmosphärischen Problemen:1. Präprozessierende Homogenisierung von multitemporalenMSS-Archivdaten mit Simulationen zur Wirksamkeitatmosphärischer und sensorbedingter Effekte2. Entwicklung einer Methode zur semi-automatischenErfassung und Quantifizierung der Dynamik derGehölzbedeckungsdichte auf panchromatischenArchiv-Luftbildern Die erste Teilstudie stellt historischeLandsat-MSS-Satellitenbilddaten für multi-temporale Analysender Landschaftsdynamik als unbrauchbar heraus. In derzweiten Teilstudie wird der eigens, mittelsmorphomathematischer Filteroperationen für die automatischeMusterkennung und Quantifizierung von Sahelgehölzobjektenentwickelte Methodenansatz präsentiert. Abschließend wird die Forderung nach kosten- undzeiteffizienten Methodenstandards hinsichtlich ihrerRepräsentativität für die Langzeitbeobachtung desRessourceninventars semi-arider Räume sowie deroperationellen Transferierbarkeit auf Datenmaterial modernerFernerkundungssensoren diskutiert.