921 resultados para Landau parameter
Resumo:
In this article, along with others, we take the position that the Null-Subject Parameter (NSP) (Chomsky 1981; Rizzi 1982) cluster of properties is narrower in scope than some originally contended. We test for the resetting of the NSP by English L2 learners of Spanish at the intermediate level, including poverty-of-the stimulus knowledge of the Overt Pronoun Constraint (Montalbetti 1984). Our participants are tested before and after five months' residency in Spain in an effort to see if increased amounts of native exposure are particularly beneficial for parameter resetting. Although we demonstrate NSP resetting for some of the L2 learners, our data essentially demonstrate that even with the advent of time/exposure to native input, there is no immediate gainful effect for NSP resetting.
Resumo:
We present a novel algorithm for concurrent model state and parameter estimation in nonlinear dynamical systems. The new scheme uses ideas from three dimensional variational data assimilation (3D-Var) and the extended Kalman filter (EKF) together with the technique of state augmentation to estimate uncertain model parameters alongside the model state variables in a sequential filtering system. The method is relatively simple to implement and computationally inexpensive to run for large systems with relatively few parameters. We demonstrate the efficacy of the method via a series of identical twin experiments with three simple dynamical system models. The scheme is able to recover the parameter values to a good level of accuracy, even when observational data are noisy. We expect this new technique to be easily transferable to much larger models.
Resumo:
The co-polar correlation coefficient (ρhv) has many applications, including hydrometeor classification, ground clutter and melting layer identification, interpretation of ice microphysics and the retrieval of rain drop size distributions (DSDs). However, we currently lack the quantitative error estimates that are necessary if these applications are to be fully exploited. Previous error estimates of ρhv rely on knowledge of the unknown "true" ρhv and implicitly assume a Gaussian probability distribution function of ρhv samples. We show that frequency distributions of ρhv estimates are in fact highly negatively skewed. A new variable: L = -log10(1 - ρhv) is defined, which does have Gaussian error statistics, and a standard deviation depending only on the number of independent radar pulses. This is verified using observations of spherical drizzle drops, allowing, for the first time, the construction of rigorous confidence intervals in estimates of ρhv. In addition, we demonstrate how the imperfect co-location of the horizontal and vertical polarisation sample volumes may be accounted for. The possibility of using L to estimate the dispersion parameter (µ) in the gamma drop size distribution is investigated. We find that including drop oscillations is essential for this application, otherwise there could be biases in retrieved µ of up to ~8. Preliminary results in rainfall are presented. In a convective rain case study, our estimates show µ to be substantially larger than 0 (an exponential DSD). In this particular rain event, rain rate would be overestimated by up to 50% if a simple exponential DSD is assumed.
Resumo:
The primary objective of this research study is to determine which form of testing, the PEST algorithm or an operator-controlled condition is most accurate and time efficient for administration of the gaze stabilization test
Resumo:
Support vector machines (SVMs) were originally formulated for the solution of binary classification problems. In multiclass problems, a decomposition approach is often employed, in which the multiclass problem is divided into multiple binary subproblems, whose results are combined. Generally, the performance of SVM classifiers is affected by the selection of values for their parameters. This paper investigates the use of genetic algorithms (GAs) to tune the parameters of the binary SVMs in common multiclass decompositions. The developed GA may search for a set of parameter values common to all binary classifiers or for differentiated values for each binary classifier. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In the bi-dimensional parameter space of an impact-pair system, shrimp-shaped periodic windows are embedded in chaotic regions. We show that a weak periodic forcing generates new periodic windows near the unperturbed one with its shape and periodicity. Thus, the new periodic windows are parameter range extensions for which the controlled periodic oscillations substitute the chaotic oscillations. We identify periodic and chaotic attractors by their largest Lyapunov exponents. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We show that the S parameter is not finite in theories of electroweak symmetry breaking in a slice of anti-de Sitter five-dimensional space, with the light fermions localized in the ultraviolet. We compute the one-loop contributions to S from the Higgs sector and show that they are logarithmically dependent on the cutoff of the theory. We discuss the renormalization of S, as well as the implications for bounds from electroweak precision measurements on these models. We argue that, although in principle the choice of renormalization condition could eliminate the S parameter constraint, a more consistent condition would still result in a large and positive S. On the other hand, we show that the dependence on the Higgs mass in S can be entirely eliminated by the renormalization procedure, making it impossible in these theories to extract a Higgs mass bound from electroweak precision constraints.
Resumo:
The two-fluid and Landau criteria for superfluidity are compared for trapped Bose gases. While the two-fluid criterion predicts translational superfluidity, it is suggested, on the basis of the homogeneous Gross-Pitaevski limit, that a necessary part of Landau`s criterion, adequate for non-translationally invariant systems, does not hold for trapped Bose gases in the GP limit. As a consequence, if the compressibility is detected to be very large (infinite by experimental standards), the two-fluid criterion is seen to be the relevant one in case the system is a translational superfluid, while the Landau criterion is the relevant one if translational superfluidity is absent.
Resumo:
We consider the three-particle scattering S-matrix for the Landau-Lifshitz model by directly computing the set of the Feynman diagrams up to the second order. We show, following the analogous computations for the non-linear Schrdinger model [1, 2], that the three-particle S-matrix is factorizable in the first non-trivial order.
Resumo:
We have studied Shubnikov de Haas oscillations and the quantum Hall effect in GaAs-double well structures in tilted magnetic fields. We found strong magnetoresistance oscillations as a function of an in-plane magnetic field B(parallel to) at nu = 4N + 3 and nu = 4N + 1 filling factors. At low perpendicular magnetic field B(perpendicular to), the amplitude of the conventional Shubnikov-de Haas (SdH) oscillations also exhibits B(parallel to)-periodic dependence at fixed values of B(perpendicular to). We interpret the observed oscillations as a manifestation of the interference between cyclotron orbits in different quantum wells.
Resumo:
We consider a Moyal plane and propose to make the noncommutativity parameter Theta(mu nu) bifermionic, i.e. composed of two fermionic (Grassmann odd) parameters. The Moyal product then contains a finite number of derivatives, which avoid the difficulties of the standard approach. As an example, we construct a two-dimensional noncommutative field theory model based on the Moyal product with a bifermionic parameter and show that it has a locally conserved energy-momentum tensor. The model has no problem with the canonical quantization and appears to be renormalizable.
Resumo:
We investigate the analog of Landau quantization, for a neutral polarized particle in the presence of homogeneous electric and magnetic external fields, in the context of non-commutative quantum mechanics. This particle, possessing electric and magnetic dipole moments, interacts with the fields via the Aharonov-Casher and He-McKellar-Wilkens effects. For this model we obtain the Landau energy spectrum and the radial eigenfunctions of the non-commutative space coordinates and non-commutative phase space coordinates. Also we show that the case of non-commutative phase space can be treated as a special case of the usual non-commutative space coordinates.
Resumo:
The interest in attractive Bose-Einstein Condensates arises due to the chemical instabilities generate when the number of trapped atoms is above a critical number. In this case, recombination process promotes the collapse of the cloud. This behavior is normally geometry dependent. Within the context of the mean field approximation, the system is described by the Gross-Pitaevskii equation. We have considered the attractive Bose-Einstein condensate, confined in a nonspherical trap, investigating numerically and analytically the solutions, using controlled perturbation and self-similar approximation methods. This approximation is valid in all interval of the negative coupling parameter allowing interpolation between weak-coupling and strong-coupling limits. When using the self-similar approximation methods, accurate analytical formulas were derived. These obtained expressions are discussed for several different traps and may contribute to the understanding of experimental observations.
Resumo:
In this paper we consider the case of a Bose gas in low dimension in order to illustrate the applicability of a method that allows us to construct analytical relations, valid for a broad range of coupling parameters, for a function which asymptotic expansions are known. The method is well suitable to investigate the problem of stability of a collection of Bose particles trapped in one- dimensional configuration for the case where the scattering length presents a negative value. The eigenvalues for this interacting quantum one-dimensional many particle system become negative when the interactions overcome the trapping energy and, in this case, the system becomes unstable. Here we calculate the critical coupling parameter and apply for the case of Lithium atoms obtaining the critical number of particles for the limit of stability.