927 resultados para LACTATE
Resumo:
Copper sulfate is widely used in aquaculture. Exposure to this compound can be harmful to fish, resulting in oxidative metabolism alterations and gill tissue damage. Pacu, Piaractus mesopotamicus, (wt = 43.4 +/- A 3.35 g) were distributed in experimental tanks (n = 10; 180 l) and exposed for 48 h to control (without copper addition), 0.4Cu (0.4 mg l(-1)), 0CupH (without copper addition, pH = 5.0) and 0.4CupH (0.4 mg l(-1), pH = 5.0). In liver and red muscle, the superoxide dismutase (SOD) was responsive to the increases in the aquatic copper. The plasmatic intermediary metabolites and hematological variables in the fish of group 0.4Cu were similar to those of the control group. Conversely, the exposure to 0.4CupH caused an increase in the plasmatic lactate, number of red blood cells (RBC) and hemoglobin (Hb). Plasmatic copper concentration [Cu(p)] increased in group 0.4Cu and 0.4CupH, which is higher in group 0.4CupH, suggests an effect of water pH on the absorbed copper. Exposure to 0.4Cu and 0.4CupH resulted in a reduction in the Na(+)/K(+)-ATPase activity and an increase in metallothionein (MT) in the gills. Exposure to 0CupH caused a decrease in glucose and pyruvate concentrations and an increase in RBC, Hb, and the branchial Na(+)/K(+)-ATPase activity. These responses suggest that the fish triggered mechanisms to revert the blood acidosis, save energy and increase the oxygen uptake. MT was an effective biomarker, responding to copper in different pHs and dissolved oxygen. Combined-factors caused more significant disturbance in the biomarkers than single-factors.
Resumo:
The eukaryotic translation initiation factor 5A (eIF5A) contains a special amino acid residue named hypusine that is required for its activity, being produced by a post-translational modification using spermidine as substrate. Stem cells from rat skeletal muscles (satellite cells) were submitted to differentiation and an increase of eIF5A gene expression was observed. Higher content of eIF5A protein was found in satellite cells on differentiation in comparison to non-differentiated satellite cells and skeletal muscle. The treatment with NI-guanyl- 1,7-diaminoheptane (GC7), a hypusination inhibitor, reversibly abolished the differentiation process. In association with the differentiation blockage, an increase of glucose consumption and lactate production and a decrease of glucose and palmitic acid oxidation were observed. A reduction in cell proliferation and protein synthesis was also observed. L-Arginine, a spermidine precursor and partial suppressor of muscle dystrophic phenotype, partially abolished the GC7 inhibitory effect on satellite cell differentiation. These results reveal a new physiological role for eIF5A and contribute to elucidate the molecular mechanisms involved in muscle regeneration.
Resumo:
Global gene expression analysis was carried out with Blastocladiella emersonii cells subjected to oxygen deprivation (hypoxia) using cDNA microarrays. In experiments of gradual hypoxia (gradual decrease in dissolved oxygen) and direct hypoxia (direct decrease in dissolved oxygen), about 650 differentially expressed genes were observed. A total of 534 genes were affected directly or indirectly by oxygen availability, as they showed recovery to normal expression levels or a tendency to recover when cells were reoxygenated. In addition to modulating many genes with no putative assigned function, B. emersonii cells respond to hypoxia by readjusting the expression levels of genes responsible for energy production and consumption. At least transcriptionally, this fungus seems to favor anaerobic metabolism through the upregulation of genes encoding glycolytic enzymes and lactate dehydrogenase and the downregulation of most genes coding for tricarboxylic acid (TCA) cycle enzymes. Furthermore, genes involved in energy-costly processes, like protein synthesis, amino acid biosynthesis, protein folding, and transport, had their expression profiles predominantly down-regulated during oxygen deprivation, indicating an energy-saving effort. Data also revealed similarities between the transcriptional profiles of cells under hypoxia and under iron(II) deprivation, suggesting that Fe(2+) ion could have a role in oxygen sensing and/or response to hypoxia in B. emersonii. Additionally, treatment of fungal cells prior to hypoxia with the antibiotic geldanamycin, which negatively affects the stability of mammalian hypoxia transcription factor HIF-1 alpha, caused a significant decrease in the levels of certain upregulated hypoxic genes.
Resumo:
A novel approach of using a gold disc microelectrode to analyze sweat samples for copper ions by anodic square wave stripping voltammetry (SW stripping voltammetry) is described Sweat was collected from the lower back of four subjects after physical exercise and the sample volume required for the determinations was 100 mu L. Under the optimized conditions the calibration plot was linear over the range 1-100 mu mol L(-1) Cu(II) with a limit of detection of 0 25 mu mol L(-1) The precision was evaluated by carrying out five replicate measurements in a 1 mu mol L(-1) Cu(II) solution and the standard deviation was found to be 1 5% Measurements were performed by inserting the microelectrode into sweat drops and Cu(II) concentrations in the analyzed samples ranged from 09 to 28 mu mol L(-1) Values obtained by the proposed voltammetric method agreed well with those found using graphite furnace atomic absorption spectroscopy (GFAAS) (C) 2010 Elsevier B V All rights reserved
Resumo:
The electrochemical behavior of ISO 5832-9 stainless steel at 37 degrees C in 0.9% NaCl, Ringer Lactate and minimum essential medium (MEM) has been studied, using linear voltammetry, and surface analysis by SEM and EDS. Mechanical and toxicity tests were made. ISO 5832-9 is passivated at corrosion potential (E) and it does not present pitting corrosion on the media studied from to 50 in V above the transpassivation potential (Ei). SEM and EDS analysis have shown that the sample previously immersed in MEM presents a diffirent behavior at 50 in V above El: the manganese oxide inclusions are absent in the surface. E. values and passivation current density values j(pass) changed according to the following. E(corr, RL) < E(corr,NaCl) < E(corr, MEM) and J (MEM) << j(RL) congruent to j(NaCl) The stainless steel was characterized as non toxic in the cytotoxicity assay
Resumo:
Differential Scanning Calorimetry (DSC), thermogravimetry/derivative thermogravimetry (TG/DTG) and infrared spectroscopy (IR) techniques were used to investigate the compatibility between prednicarbate and several excipients commonly used in semi solid pharmaceutical form. The thermoanalytical studies of 1:1 (m/m) drug/excipient physical mixtures showed that the beginning of the first thermal decomposition stage of the prednicarbate (T (onset) value) was decreased in the presence of stearyl alcohol and glyceryl stearate compared to the drug alone. For the binary mixture of drug/sodium pirrolidone carboxilate the first thermal decomposition stage was not changed, however the DTG peak temperature (T (peak DTG)) decreased. The comparison of the IR spectra of the drug, the physical mixtures and of the thermally treated samples confirmed the thermal decomposition of prednicarbate. By the comparison of the thermal profiles of 1:1 prednicarbate:excipients mixtures (methylparaben, propylparaben, carbomer 940, acrylate crosspolymer, lactic acid, light liquid paraffin, isopropyl palmitate, myristyl lactate and cetyl alcohol) no interaction was observed.
Resumo:
Purpose: The aim of this in situ double-blind randomised crossover study was to investigate the effect of calcium (Ca) pre-rinse on the composition of plaque and on enamel prior to the use of fluoride (F) dentifrice. Materials and Methods: During four phases (14 days each) of this study, 10 volunteers had agreed to wear dental appliances containing two healthy bovine enamel blocks. A fresh solution containing 20% weight/volume (w/v) sucrose was dripped on the enamel blocks ex vivo for 5 min three times a day. Subsequently, the appliances were replaced in the mouth, and the volunteers rinsed their mouth with 10 mL of a Ca (150 mmol/L) or a placebo rinse (1 min). In sequence, a slurry (1:3 w/v) of F (1030 ppm) or placebo dentifrice was dripped onto the blocks ex vivo for 1 min. During this time, the volunteers brushed their teeth with the respective dentifrice. The appliances were replaced in the mouth, and the volunteers rinsed their mouth with water. The plaque formed on the blocks was analysed for F and Ca. The enamel demineralisation as well as the incorporation of F on enamel was evaluated by cross-sectional microhardness and alkali-soluble F analysis, respectively. Data were tested using analysis of variance (P < 0.05). Results: The Ca pre-rinse prior to the use of the F dentifrice led to a three- and sixfold increase in the plaque F and Ca concentrations, respectively. It also did not have any additive effect on the F content on the enamel and the demineralisation of the enamel, in comparison with the use of F dentifrice alone. Conclusions: A Ca lactate rinse used prior to the F dentifrice was able to change the mineral content in the plaque, but it was unable to prevent enamel demineralisation.
Resumo:
An analytical procedure for the separation and quantification of ethyl acetate, ethyl butyrate, ethyl hexanoate, ethyl lactate, ethyl octanoate, ethyl nonanoate, ethyl decanoate, isoamyl octanoate, and ethyl laurate in cachaca, rum, and whisky by direct injection gas chromatography-mass spectrometry was developed. The analytical method is simple, selective, and appropriated for the determination of esters in distilled spirits. The limit of detection ranged from 29 (ethyl hexanoate) to 530 (ethyl acetate) mu g L-1, whereas the standard deviation for repeatability was between 0.774% (ethyl hexanoate) and 5.05% (isoamyl octanoate). Relative standard deviation values for accuracy vary from 90.3 to 98.5% for ethyl butyrate and ethyl acetate, respectively. Ethyl acetate was shown to be the major ester in cachaca (median content of 22.6 mg 100 mL(-1) anhydrous alcohol), followed by ethyl lactate (median content of 8.32 mg 100 mL(-1) anhydrous alcohol). Cachaca produced in copper and hybrid alembic present a higher content of ethyl acetate and ethyl lactate than those produced in a stainless-steel column, whereas cachaca produced by distillation in a stainless-steel column present a higher content of ethyl octanoate, ethyl decanoate, and ethyl laurate. As expected, ethyl acetate is the major ester in whiskey and rum, followed by ethyl lactate for samples of rum. Nevertheless, whiskey samples exhibit ethyl lactate at contents lower or at the same order of magnitude of the fatty esters.
Resumo:
Introduction Performance in cross-country skiing is influenced by the skier’s ability to continuously produce propelling forces and force magnitude in relation to the net external forces. A surrogate indicator of the “power supply” in cross-country skiing would be a physiological variable that reflects an important performance-related capability, whereas the body mass itself is an indicator of the “power demand” experienced by the skier. To adequately evaluate an elite skier’s performance capability, it is essential to establish the optimal ratio between the physiological variable and body mass. The overall aim of this doctoral thesis was to investigate the importance of body-mass exponent optimization for the evaluation of performance capability in cross-country skiing. Methods In total, 83 elite cross-country skiers (56 men and 27 women) volunteered to participate in the four studies. The physiological variables of maximal oxygen uptake (V̇O2max) and oxygen uptake corresponding to a blood-lactate concentration of 4 mmol∙l-1 (V̇O2obla) were determined while treadmill roller skiing using the diagonal-stride technique; mean oxygen uptake (V̇O2dp) and upper-body power output (Ẇ) were determined during double-poling tests using a ski-ergometer. Competitive performance data for elite male skiers were collected from two 15-km classical-technique skiing competitions and a 1.25-km sprint prologue; additionally, a 2-km double-poling roller-skiing time trial using the double-poling technique was used as an indicator of upper-body performance capability among elite male and female junior skiers. Power-function modelling was used to explain the race and time-trial speeds based on the physiological variables and body mass. Results The optimal V̇O2max-to-mass ratios to explain 15-km race speed were V̇O2max divided by body mass raised to the 0.48 and 0.53 power, and these models explained 68% and 69% of the variance in mean skiing speed, respectively; moreover, the 95% confidence intervals (CI) for the body-mass exponents did not include either 0 or 1. For the modelling of race speed in the sprint prologue, body mass failed to contribute to the models based on V̇O2max, V̇O2obla, and V̇O2dp. The upper-body power output-to-body mass ratio that optimally explained time-trial speed was Ẇ ∙ m-0.57 and the model explained 63% of the variance in speed. Conclusions The results in this thesis suggest that V̇O2max divided by the square root of body mass should be used as an indicator of performance in 15-km classical-technique races among elite male skiers rather than the absolute or simple ratio-standard scaled expression. To optimally explain an elite male skier’s performance capability in sprint prologues, power-function models based on oxygen-uptake variables expressed absolutely are recommended. Moreover, to evaluate elite junior skiers’ performance capabilities in 2-km double-poling roller-skiing time trials, it is recommended that Ẇ divided by the square root of body mass should be used rather than absolute or simple ratio-standard scaled expression of power output.
Resumo:
Introduction Researchers have, for decades, contributed to an increased collective understanding of the physiological demands in cross-country skiing; however, almost all of these studies have used either non-elite subjects and/or performances that emulate cross-country skiing. To establish the physiological demands of cross-country skiing, it is important to relate the investigated physiological variables to the competitive performance of elite skiers. The overall aim of this doctoral thesis was, therefore, to investigate the external validity of physiological test variables to determine the physiological demands in competitive elite cross-country skiing. Methods The subjects in Study I – IV were elite male (I – III) and female (III – IV) cross-country skiers. In all studies, the relationship between test variables (general and ski-specific) and competitive performances (i.e. the results from competitions or the overall ski-ranking points of the International Ski Federation (FIS) for sprint (FISsprint) and distance (FISdist) races) were analysed. Test variables reflecting the subject’s general strength, upper-body and whole-body oxygen uptake, oxygen uptake and work intensity at the lactate threshold, mean upper-body power, lean mass, and maximal double-poling speed were investigated. Results The ability to maintain a high work rate without accumulating lactate is an indicator of distance performance, independent of sex (I, IV). Independent of sex, high oxygen uptake in whole-body and upper-body exercise was important for both sprint (II, IV) and distance (I, IV) performance. The maximal double-poling speed and 60-s double-poling mean power output were indicators of sprint (IV) and distance performance (I), respectively. Lean mass was correlated with distance performance for women (III), whereas correlations were found between lean mass and sprint performance among both male and female skiers (III). Moreover, no correlations between distance performance and test variables were derived from tests of knee-extension peak torque, vertical jumps, or double poling on a ski-ergometer with 20-s and 360-s durations (I), whereas gross efficiency while treadmill roller skiing showed no correlation with either distance or sprint performance in cross-country skiing (IV). Conclusion The results in this thesis show that, depending on discipline and sex, maximal and peak oxygen uptake, work intensity at the lactate threshold, lean mass, double-poling mean power output, and double-poling maximal speed are all externally valid physiological test variables for evaluation of performance capability among elite cross-country skiers; however, to optimally indicate performance capability different test-variable expressions should be used; in general, the absolute expression appears to be a better indicator of competitive sprint performance whereas the influence of body mass should be considered when evaluating competitive distance performance capability of elite cross-country skiers.
Resumo:
Contrary to previous research, training may improve exercise performance in a lizard, the brown anole. A brief, two-week training period resulted in increased performance speed and distance before exhaustion in trained lizards. Trained lizards were also able to more effectively use leg glycogen stores, however each of these improvements were not found in lizards treated with alcohol. Liver glycogen concentrations were also lower in alcohol-treated lizards, and patterns of liver glycogen concentrations during recovery indicate some hepatic lactate gluconeogenesis.
Resumo:
A participação de marcadores bioquímicos na avaliação de quadros de asfixia neonatal é cada vez mais relevante. A proteína S100B tem um papel destacado nestas pesquisas. O objetivo deste estudo foi procurar destacar a importância da proteína S100B na avaliação de recém-nascidos a termo com quadros de encefalopatia hipóxico-isquêmica, assim como correlacionar com outras substâncias que também participam do processo isquêmico. Foram analisados 21 casos de recém-nascidos a termo que desenvolveram quadro de encefalopatia hipóxico-isquêmica, no período de setembro de 2003 a outubro de 2004. Realizadas coletas no 1º e 4º dia de vida e dosadas, por método imunocitoquímico, a proteína S100B e o lactato. Foi possível detectar uma correlação positiva entre as 2 substâncias, assim como, quando comparadas entre si, observou-se também significância estatística.
Resumo:
Objetivo: estudar os efeitos hemodinâmicos da solução salina hipertônica/dextran, comparada com solução salina normal, em pacientes com sepse grave. Modelo: ensaio clínico randomizado, prospectivo, duplo-cego, controlado. Local: Unidade de Terapia Intensiva de um hospital universitário. Pacientes: 29 pacientes com sepse grave, admitidos na UTI com pressão de oclusão da artéria pulmonar (POAP) menor que 12 mmHg. Intervenções: os pacientes foram randomizados para receber 250 ml da solução salina normal [NaCl 0,9%] (Grupo SS, n=16) ou solução salina hipertônica [NaCl 7,5%]/dextran 70 8% ( Grupo SSH, n=13). Medidas e resultados: para cada grupo foram coletadas medidas hemodinâmicas, gasometrias (arterial e venosa), lactato e sódio séricos nos tempos 0, 30 minutos, 60 minutos, 120 minutos e 180 minutos. Durante o período do estudo não foi permitida qualquer alteração na infusão tanto de fluidos quanto das drogas vasopressoras. A POAP foi maior no grupo SSH, com a diferença sendo maior em 30 minutos (10,7±3,2 mmHg vs. 6,8±3,2 mmHg) e 60 minutos (10,3±3 mmHg vs. 7,4±2,9 mmHg); p<0,05. O índice cardíaco aumentou apenas no grupo SSH, sendo que as diferenças foram maiores em 30 minutos (6,5±4,7 l min-1 m-2 vs. 3,8±3,4 l min-1 m-2), em 60 minutos (4,9±4,5 l min-1 m-2 vs. 3,7±3,3 l min-1 m-2) e em 120 minutos (5,0±4,3 l min-1 m-2 vs. 4,1±3,4 l min-1 m-2); p<0,05. O índice sistólico seguiu o mesmo padrão e foi maior em 30 minutos (53,6[39,2-62,8] ml m-2 vs. 35,6[31,2-49,2] ml m-2) e em 60 minutos (46,8[39,7-56,6] ml m-2 vs. 33,9[32,2-47,7] ml m-2); p<0,05. A resistência vascular sistêmica diminuiu no grupo SSH e foi menor nos tempos 30 minutos (824±277 dyne s-1 cm-5 m-2 vs. 1139±245 dyne s-1 cm-5 m-2), em 60 minutos (921±256 dyne s-1 cm-5 m-2 vs. 1246±308 dyne s-1 cm-5 m-2) e em 120 minutos (925±226 dyne s-1 cm-5 m-2 vs. 1269±494 dyne s-1 cm-5 m-2); p<0,05. O sódio sérico aumentou no grupo SSH e foi maior do que o grupo SS em 30 minutos (145±3 mEq l-1 vs. 137±7 mEq l-1), em 60 minutos (143±4 mEq l-1 vs. 136±77 mEq l-1), em 120 minutos (142±5 mEq l-1vs. 136±7 mEq l-1) e em 180 minutos (142±5 mEq l-1 vs. 136±87 mEq l-1); p<0,05. Conclusão: Solução salina hipertônica/dextran pode melhorar a performance cardiovascular na ressuscitação de pacientes com sepse grave. Os efeitos hemodinâmicos parecem estar relacionados tanto ao efeito no volume quanto a melhora da função cardíaca. A SSH/dextran podem ajudar a restaurar rapidamente a estabilidade hemodinâmica em pacientes sépticos, hipovolêmicos, sem apresentar efeitos indesejáveis significativos.
Resumo:
A study was conducted on the effects of acute administration of aminophylline on physiological variables in purebred Arabian horses submitted to incremental exercise test. Twelve horses were submitted to two physical tests separated by a 10-day interval in a crossover study. These horses were divided into two groups: control (C, n = 12) and aminophylline (AM, n = 12). The drug at 10 mg/kg body weight or saline was given intravenously, 30 minutes before the incremental exercise test. The treadmill exercise test consisted of an initial warmup followed by gradually increasing physical exigency. Blood samples were assayed for lactic acid, glucose, and insulin. Maximal lactic acidemia was greater (P = .0238) in the AM group. Both V-2 and V-4 (velocities at which lactate concentrations were 2 and 4 mmol/ L, respectively) were reduced in the AM group by 15.85% (P = .0402) and 17.76% (P = .0 109), respectively. At rest as well as at 4 minutes, insulinemia was greater in the AM group (P = .0417 and .0393), Glycemia group at times 8 was statistically lower in the Al (P = .0138) and 10 minutes (P = .0432). Use of ammophylline in horses during incremental exercise does not seem to be beneficial, because this drug has a tendency to cause hypoglycemia and to increase dependence on anaerobic glucose metabolism.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)