958 resultados para Kallikrein 15 single nucleotide polymorphisms
Resumo:
Background: In recent years, microRNA (miRNA) pathways have emerged as a crucial system for the regulation of tumorogenesis. miR-SNPs are a novel class of single nucleotide polymorphisms that can affect miRNA pathways. Design and Methods: We analyzed eight miR-SNPs by allelic discrimination in 141 patients with Hodgkin lymphoma and correlated the results with treatment-related toxicity, response, disease-free survival (DFS) and overall survival (OS). Results: The KRT81 (rs3660) GG genotype was associated with an increased risk of neurological toxicity (P=0.016), while patients with XPO5 (rs11077) AA or CC genotypes had a higher rate of bleomycin-associated pulmonary toxicity (P=0.048). Both miR-SNPs emerged as independent factors in the multivariate analysis. The XPO5 AA and CC genotypes were also associated with a lower response rate (P=0.036). XPO5 (P=0.039) and TRBP (rs784567) (P=0.022) genotypes emerged as prognostic markers for DFS, and XPO5 was also associated with OS (P=0.033). In the multivariate analysis, only XPO5 emerged as an independent prognostic factor for DFS (HR: 2.622; 95%CI 1.039-6.620; P=0.041). Given the influence of XPO5 and TRBP as individual markers, we then investigated the combined effect of these miR-SNPs. Patients with both the XPO5 AA/CC and TRBP TT/TC genotypes had the shortest DFS (P=0.008) and OS (P=0.008). Conclusion: miR-SNPs can add useful prognostic information on treatment-related toxicity and clinical outcome in Hodgkin lymphoma and can be used to identify patients likely to be chemoresistant or to relapse.
Resumo:
Elevated plasma levels of lipoprotein-associated phospholipase A(2) (Lp-PLA2) activity have been shown to be associated with increased risk of coronary heart disease and an inhibitor of this enzyme is under development for the treatment of that condition. A Val279Phe null allele in this gene, that may influence patient eligibility for treatment, is relatively common in East Asians but has not been observed in Europeans. We investigated the existence and functional effects of low frequency alleles in a Western European population by re-sequencing the exons of PLA2G7 in 2000 samples. In all, 19 non-synonymous single-nucleotide polymorphisms (nsSNPs) were found, 14 in fewer than four subjects (minor allele frequency <0.1%). Lp-PLA2 activity was significantly lower in rare nsSNP carriers compared with non-carriers (167.8±63.2 vs 204.6±41.8, P=0.01) and seven variants had enzyme activities consistent with a null allele. The cumulative frequency of these null alleles was 0.25%, so <1 in 10,000 Europeans would be expected to be homozygous, and thus not potentially benefit from treatment with an Lp-PLA2 inhibitor.
Resumo:
The objective of this work was to evaluate the effects of single-nucleotide polymorphisms (SNPs) in the genes IGF1 (AF_017143.1:g.198C>T), MSTN (AF_320998.1:g.433C>A), MYOD1 (NC_007313:g.1274A>G) and MYF5 (NC_007303:g.1911A>G) on carcass and meat traits in Nelore (Bos indicus) and Nelore x B. taurus. A total of 300 animals were genotyped and phenotyped for rib eye area (REA), backfat thickness (BT), intramuscular fat (IF), shear force (SF) and myofibrillar fragmentation index (MFI). The effects of allele substitution for each SNP were estimated by regression of the evaluated phenotypes on the number of copies of a particular allele using the general linear model. The polymorphism at IGF1 was non-informative in Nelore animals. In crossbred animals, the IGF1 C allele was associated with greater REA. However, this relation was not significant after Bonferroni correction for multiple testing. The A allele of the MSTN polymorphism was absent in Nelore cattle and was only found in two crossbred animals. The polymorphisms of MYOD1 and MYF5 were little informative in Nelore animals with G allele frequency of 0.097 and A allele frequency of 0.031, respectively. These markers show no association with the analyzed traits in the total sample of evaluated animals.
Resumo:
We present the most comprehensive comparison to date of the predictive benefit of genetics in addition to currently used clinical variables, using genotype data for 33 single-nucleotide polymorphisms (SNPs) in 1,547 Caucasian men from the placebo arm of the REduction by DUtasteride of prostate Cancer Events (REDUCE®) trial. Moreover, we conducted a detailed comparison of three techniques for incorporating genetics into clinical risk prediction. The first method was a standard logistic regression model, which included separate terms for the clinical covariates and for each of the genetic markers. This approach ignores a substantial amount of external information concerning effect sizes for these Genome Wide Association Study (GWAS)-replicated SNPs. The second and third methods investigated two possible approaches to incorporating meta-analysed external SNP effect estimates - one via a weighted PCa 'risk' score based solely on the meta analysis estimates, and the other incorporating both the current and prior data via informative priors in a Bayesian logistic regression model. All methods demonstrated a slight improvement in predictive performance upon incorporation of genetics. The two methods that incorporated external information showed the greatest receiver-operating-characteristic AUCs increase from 0.61 to 0.64. The value of our methods comparison is likely to lie in observations of performance similarities, rather than difference, between three approaches of very different resource requirements. The two methods that included external information performed best, but only marginally despite substantial differences in complexity.
Resumo:
BACKGROUND: An ADME (absorption, distribution, metabolism and excretion)-pharmacogenetics association study may identify functional variants relevant to the pharmacokinetics of lopinavir co-formulated with ritonavir (LPV/r), a first-line anti-HIV agent. METHODS: An extensive search of literature and web resources helped select ADME genes and single nucleotide polymorphisms (SNPs, functional and HapMap tagging SNPs) with a proven or potentially relevant role in LPV/r pharmacokinetics. The study followed a two-stage design. Stage 1 (discovery) considered a Caucasian population (n=638) receiving LPV/r, where we selected 117 individuals with low LPV clearance (cases) and 90 individuals with high clearance (controls). Genotyping was performed by a 1536-SNP customized GoldenGate Illumina BeadArray. Stage 2 (confirmation) represented a replication study of candidate SNPs from the stage 1 in 148 individuals receiving LPV/r. The analysis led to formal population pharmacokinetic-pharmacogenetic modeling of demographic, environmental and candidate SNP effects. RESULTS: One thousand three hundred and eighty SNPs were successfully genotyped. Nine SNPs prioritized by the stage 1 analysis were brought to replication. Stage 2 confirmed the contribution of two functional SNPs in SLCO1B1, one functional SNP in ABCC2 and a tag SNP of the CYP3A locus in addition to body weight effect and ritonavir coadministration. According to the population pharmacokinetic-pharmacogenetic model, genetic variants explained 5% of LPV variability. Individuals homozygous rs11045819 (SLCO1B1*4) had a clearance of 12.6 l/h, compared with 5.4 l/h in the reference group, and 3.9 l/h in individuals with two or more variant alleles of rs4149056 (SLCO1B1*5), rs717620 (ABCC2) or rs6945984 (CYP3A). A subanalysis confirmed that although a significant part of the variance in LPV clearance was attributed to fluctuation in ritonavir levels, genetic variants had an additional effect on LPV clearance. CONCLUSION: The two-stage strategy successfully identified genetic variants affecting LPV/r pharmacokinetics. Such a general approach of ADME pharmacogenetics should be generalized to other drugs.
Resumo:
Discussion on improving the power of genome-wide association studies to identify candidate variants and genes is generally centered on issues of maximizing sample size; less attention is given to the role of phenotype definition and ascertainment. The authors used genome-wide data from patients infected with human immunodeficiency virus type 1 (HIV-1) to assess whether differences in type of population (622 seroconverters vs. 636 seroprevalent subjects) or the number of measurements available for defining the phenotype resulted in differences in the effect sizes of associations between single nucleotide polymorphisms and the phenotype, HIV-1 viral load at set point. The effect estimate for the top 100 single nucleotide polymorphisms was 0.092 (95% confidence interval: 0.074, 0.110) log(10) viral load (log(10) copies of HIV-1 per mL of blood) greater in seroconverters than in seroprevalent subjects. The difference was even larger when the authors focused on chromosome 6 variants (0.153 log(10) viral load) or on variants that achieved genome-wide significance (0.232 log(10) viral load). The estimates of the genetic effects tended to be slightly larger when more viral load measurements were available, particularly among seroconverters and for variants that achieved genome-wide significance. Differences in phenotype definition and ascertainment may affect the estimated magnitude of genetic effects and should be considered in optimizing power for discovering new associations.
Resumo:
Genetic variants influence the risk to develop certain diseases or give rise to differences in drug response. Recent progresses in cost-effective, high-throughput genome-wide techniques, such as microarrays measuring Single Nucleotide Polymorphisms (SNPs), have facilitated genotyping of large clinical and population cohorts. Combining the massive genotypic data with measurements of phenotypic traits allows for the determination of genetic differences that explain, at least in part, the phenotypic variations within a population. So far, models combining the most significant variants can only explain a small fraction of the variance, indicating the limitations of current models. In particular, researchers have only begun to address the possibility of interactions between genotypes and the environment. Elucidating the contributions of such interactions is a difficult task because of the large number of genetic as well as possible environmental factors.In this thesis, I worked on several projects within this context. My first and main project was the identification of possible SNP-environment interactions, where the phenotypes were serum lipid levels of patients from the Swiss HIV Cohort Study (SHCS) treated with antiretroviral therapy. Here the genotypes consisted of a limited set of SNPs in candidate genes relevant for lipid transport and metabolism. The environmental variables were the specific combinations of drugs given to each patient over the treatment period. My work explored bioinformatic and statistical approaches to relate patients' lipid responses to these SNPs, drugs and, importantly, their interactions. The goal of this project was to improve our understanding and to explore the possibility of predicting dyslipidemia, a well-known adverse drug reaction of antiretroviral therapy. Specifically, I quantified how much of the variance in lipid profiles could be explained by the host genetic variants, the administered drugs and SNP-drug interactions and assessed the predictive power of these features on lipid responses. Using cross-validation stratified by patients, we could not validate our hypothesis that models that select a subset of SNP-drug interactions in a principled way have better predictive power than the control models using "random" subsets. Nevertheless, all models tested containing SNP and/or drug terms, exhibited significant predictive power (as compared to a random predictor) and explained a sizable proportion of variance, in the patient stratified cross-validation context. Importantly, the model containing stepwise selected SNP terms showed higher capacity to predict triglyceride levels than a model containing randomly selected SNPs. Dyslipidemia is a complex trait for which many factors remain to be discovered, thus missing from the data, and possibly explaining the limitations of our analysis. In particular, the interactions of drugs with SNPs selected from the set of candidate genes likely have small effect sizes which we were unable to detect in a sample of the present size (<800 patients).In the second part of my thesis, I performed genome-wide association studies within the Cohorte Lausannoise (CoLaus). I have been involved in several international projects to identify SNPs that are associated with various traits, such as serum calcium, body mass index, two-hour glucose levels, as well as metabolic syndrome and its components. These phenotypes are all related to major human health issues, such as cardiovascular disease. I applied statistical methods to detect new variants associated with these phenotypes, contributing to the identification of new genetic loci that may lead to new insights into the genetic basis of these traits. This kind of research will lead to a better understanding of the mechanisms underlying these pathologies, a better evaluation of disease risk, the identification of new therapeutic leads and may ultimately lead to the realization of "personalized" medicine.
Resumo:
The cytosine deaminase APOBEC3G, in the absence of the human immunodeficiency virus type 1 (HIV-1) accessory gene HIV-1 viral infectivity factor (vif), inhibits viral replication by introducing G-->A hypermutation in the newly synthesized HIV-1 DNA negative strand. We tested the hypothesis that genetic variants of APOBEC3G may modify HIV-1 transmission and disease progression. Single nucleotide polymorphisms were identified in the promoter region (three), introns (two), and exons (two). Genotypes were determined for 3,073 study participants enrolled in six HIV-AIDS prospective cohorts. One codon-changing variant, H186R in exon 4, was polymorphic in African Americans (AA) (f = 37%) and rare in European Americans (f < 3%) or Europeans (f = 5%). For AA, the variant allele 186R was strongly associated with decline in CD4 T cells (CD4 slope on square root scale: -1.86, P = 0.009), The 186R allele was also associated with accelerated progression to AIDS-defining conditions in AA. The in vitro antiviral activity of the 186R enzyme was not inferior to that of the common H186 variant. These studies suggest that there may be a modifying role of variants of APOBEC3G on HIV-1 disease progression that warrants further investigation.
Resumo:
Although experimental studies have suggested that insulin-like growth factor I (IGF-I) and its binding protein IGFBP-3 might have a role in the aetiology of coronary artery disease (CAD), the relevance of circulating IGFs and their binding proteins in the development of CAD in human populations is unclear. We conducted a nested case-control study, with a mean follow-up of six years, within the EPIC-Norfolk cohort to assess the association between circulating levels of IGF-I and IGFBP-3 and risk of CAD in up to 1,013 cases and 2,055 controls matched for age, sex and study enrolment date. After adjustment for cardiovascular risk factors, we found no association between circulating levels of IGF-I or IGFBP-3 and risk of CAD (odds ratio: 0.98 (95% Cl 0.90-1.06) per 1 SD increase in circulating IGF-I; odds ratio: 1.02 (95% Cl 0.94-1.12) for IGFBP-3). We examined associations between tagging single nucleotide polymorphisms (tSNPs) at the IGF1 and IGFBP3 loci and circulating IGF-I and IGFBP-3 levels in up to 1,133 cases and 2,223 controls and identified three tSNPs (rs1520220, rs3730204, rs2132571) that showed independent association with either circulating IGF-I or IGFBP-3 levels. In an assessment of 31 SNPs spanning the IGF1 or IGFBP3 loci, none were associated with risk of CAD in a meta-analysis that included EPIC-Norfolk and eight additional studies comprising up to 9,319 cases and 19,964 controls. Our results indicate that IGF-I and IGFBP-3 are unlikely to be importantly involved in the aetiology of CAD in human populations.
Resumo:
Abstract: The objective of this work was to estimate allelic frequencies of the polymorphisms IGF2/MboII (G > T) of the insulin-like growth factor 2 (IGF2) gene, DQ499531.1:g.134A > T of the pro-melanin-concentrating hormone (PMCH) gene, and DQ667048.1:g.3290G > T of the RARrelated orphan receptor C (RORC) gene in beef cattle of different genetic groups, and to evaluate the associations between these polymorphisms and traits related to carcass composition and meat quality. Data on carcass and meat quality of 499 animals was used: of 313 Nellore (Bos indicus) and of 186 Nellore crossed with different taurine (Bos taurus) breeds. For the IGF2/MboII polymorphism, the frequencies found for the G allele were 0.231 and 0.631 for Nellore and crossed breeds, respectively. For the DQ499531.1:g.134A > T polymorphism, the allelic frequencies of A were 0.850 for Nellore and 0.905 for crossed breeds. For the DQ667048.1:g.3290G > T polymorphism, the allelic frequencies of G were 0.797 and 0.460 for Nellore and crossed breeds, respectively. The evaluated single nucleotide polymorphisms (SNPs) are not significantly associated with carcass and meat traits (rib eye area, back fat thickness, shear force, total lipids, and myofibrillar fragmentation index), suggesting little utility of the analyzed polymorphisms of the IGF2, PMHC, and RORC genes as selection markers in the studied cattle populations.
Resumo:
Background: V itamin D insufficiency has been associated with the occurrence of various types of cancer, but causal relationships remain elusive. Methods: Associations between t he r isk o f HCV-related HCC development and CYP2R1 , GC, and DHCR7 genotypes, which are genetic determinants of reduced 25-OH-vitamin D3 (25[OH]D3) serum levels, were determined. Results: A t otal of 5604 HCV-infected patients, 1279 with a nd 4325 without progression to HCC, w ere identified. The well-known association between 25(OH)D3 s erum levels and variations in CYP2R1 ( rs1993116, rs10741657), GC ( rs2282679), a nd DHCR7 ( rs7944926, rs12785878) g enotypes was also apparent in patients w ith chronic hepatitis C. The same genotypes of t hese single nucleotide polymorphisms (SNPs), w hich are associated with reduced 25(OH)D3 s erum levels, were significantly associated with HCV-associated HCC (P=0.07 [OR=1.13] for CYP2R1 , P=0.007 [OR=1.56] for GC, P=0.003 [OR=1.42] for DHCR7; ORs for risk genotypes). In contrast, no association between t hese genetic variations and the o utcome of antiviral therapy with pegylated interferon-α and ribavirin ( P>0.2 for e ach SNP) or liver fibrosis progression rate (P>0.2 for each SNP) was observed, s uggesting a specific influence o f the genetic d eterminants of 25(OH)D3 s erum levels o n hepatocarcinogenesis. Conclusions: Our data suggest a relatively weak but functionally relevant role for vitamin D in the prevention of HCV-related HCC development. Controlled clinical trials to assess the benefit of vitamin D supplementation in HCVinfected patients with advanced liver fibrosis or cirrhosis are warranted.
Resumo:
BACKGROUND: Persons infected with human immunodeficiency virus (HIV) have increased rates of coronary artery disease (CAD). The relative contribution of genetic background, HIV-related factors, antiretroviral medications, and traditional risk factors to CAD has not been fully evaluated in the setting of HIV infection. METHODS: In the general population, 23 common single-nucleotide polymorphisms (SNPs) were shown to be associated with CAD through genome-wide association analysis. Using the Metabochip, we genotyped 1875 HIV-positive, white individuals enrolled in 24 HIV observational studies, including 571 participants with a first CAD event during the 9-year study period and 1304 controls matched on sex and cohort. RESULTS: A genetic risk score built from 23 CAD-associated SNPs contributed significantly to CAD (P = 2.9 × 10(-4)). In the final multivariable model, participants with an unfavorable genetic background (top genetic score quartile) had a CAD odds ratio (OR) of 1.47 (95% confidence interval [CI], 1.05-2.04). This effect was similar to hypertension (OR = 1.36; 95% CI, 1.06-1.73), hypercholesterolemia (OR = 1.51; 95% CI, 1.16-1.96), diabetes (OR = 1.66; 95% CI, 1.10-2.49), ≥ 1 year lopinavir exposure (OR = 1.36; 95% CI, 1.06-1.73), and current abacavir treatment (OR = 1.56; 95% CI, 1.17-2.07). The effect of the genetic risk score was additive to the effect of nongenetic CAD risk factors, and did not change after adjustment for family history of CAD. CONCLUSIONS: In the setting of HIV infection, the effect of an unfavorable genetic background was similar to traditional CAD risk factors and certain adverse antiretroviral exposures. Genetic testing may provide prognostic information complementary to family history of CAD.
Resumo:
La industria de la producción de camarón es una de las industrias acuícolas que se encuentra en más crecimiento en la actualidad. Los estudios para encontrar marcadores genéticos son muy efectivos para la mejora de sus propiedades y de gran interés para los productores de camarón. En este trabajo se utilizaron seis individuos de una población de Litopenaeus vannamei, donde se encontraron cuatro polimorfismos de nucleótido único (SNPs) en el gen 5HT1R (5-hidroxitriptamina receptor1) y un SNP en el gen STAT (transductor de señal y activador de la transcripción). Sin embargo, el polimorfismo en el gen STAT resultó ser homocigoto en una población diferente utilizada para análisis de asociación. Los presentes análisis revelaron que el alelo C, en dos polimorfismos SNP (C109T y C395G) del gen 5HT1R, tiende a estar asociado con el aumento del peso corporal. Consideramos que hay necesidad de hacer nuevos estudios utilizando una muestra más amplia y diversa de la población en cuestión.
Resumo:
Reference collections of multiple Drosophila lines with accumulating collections of "omics" data have proven especially valuable for the study of population genetics and complex trait genetics. Here we present a description of a resource collection of 84 strains of Drosophila melanogaster whose genome sequences were obtained after 12 generations of full-sib inbreeding. The initial rationale for this resource was to foster development of a systems biology platform for modeling metabolic regulation by the use of natural polymorphisms as perturbations. As reference lines, they are amenable to repeated phenotypic measurements, and already a large collection of metabolic traits have been assayed. Another key feature of these strains is their widespread geographic origin, coming from Beijing, Ithaca, Netherlands, Tasmania, and Zimbabwe. After obtaining 12.5× coverage of paired-end Illumina sequence reads, SNP and indel calls were made with the GATK platform. Thorough quality control was enabled by deep sequencing one line to >100×, and single-nucleotide polymorphisms and indels were validated using ddRAD-sequencing as an orthogonal platform. In addition, a series of preliminary population genetic tests were performed with these single-nucleotide polymorphism data for assessment of data quality. We found 83 segregating inversions among the lines, and as expected these were especially abundant in the African sample. We anticipate that this will make a useful addition to the set of reference D. melanogaster strains, thanks to its geographic structuring and unusually high level of genetic diversity.
Resumo:
There is growing public concern about reducing saturated fat intake. Stearoyl-CoA desaturase (SCD) is the lipogenic enzyme responsible for the biosynthesis of oleic acid (18:1) by desaturating stearic acid (18:0). Here we describe a total of 18 mutations in the promoter and 3′ non-coding region of the pig SCD gene and provide evidence that allele T at AY487830:g.2228T>C in the promoter region enhances fat desaturation (the ratio 18:1/18:0 in muscle increases from 3.78 to 4.43 in opposite homozygotes) without affecting fat content (18:0+18:1, intramuscular fat content, and backfat thickness). No mutations that could affect the functionality of the protein were found in the coding region. First, we proved in a purebred Duroc line that the C-T-A haplotype of the 3 single nucleotide polymorphisms (SNPs) (g.2108C>T; g.2228T>C; g.2281A>G) of the promoter region was additively associated to enhanced 18:1/18:0 both in muscle and subcutaneous fat, but not in liver. We show that this association was consistent over a 10-year period of overlapping generations and, in line with these results, that the C-T-A haplotype displayed greater SCD mRNA expression in muscle. The effect of this haplotype was validated both internally, by comparing opposite homozygote siblings, and externally, by using experimental Duroc-based crossbreds. Second, the g.2281A>G and the g.2108C>T SNPs were excluded as causative mutations using new and previously published data, restricting the causality to g.2228T>C SNP, the last source of genetic variation within the haplotype. This mutation is positioned in the core sequence of several putative transcription factor binding sites, so that there are several plausible mechanisms by which allele T enhances 18:1/18:0 and, consequently, the proportion of monounsaturated to saturated fat.