926 resultados para Item sets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hoy en día, con la evolución continua y rápida de las tecnologías de la información y los dispositivos de computación, se recogen y almacenan continuamente grandes volúmenes de datos en distintos dominios y a través de diversas aplicaciones del mundo real. La extracción de conocimiento útil de una cantidad tan enorme de datos no se puede realizar habitualmente de forma manual, y requiere el uso de técnicas adecuadas de aprendizaje automático y de minería de datos. La clasificación es una de las técnicas más importantes que ha sido aplicada con éxito a varias áreas. En general, la clasificación se compone de dos pasos principales: en primer lugar, aprender un modelo de clasificación o clasificador a partir de un conjunto de datos de entrenamiento, y en segundo lugar, clasificar las nuevas instancias de datos utilizando el clasificador aprendido. La clasificación es supervisada cuando todas las etiquetas están presentes en los datos de entrenamiento (es decir, datos completamente etiquetados), semi-supervisada cuando sólo algunas etiquetas son conocidas (es decir, datos parcialmente etiquetados), y no supervisada cuando todas las etiquetas están ausentes en los datos de entrenamiento (es decir, datos no etiquetados). Además, aparte de esta taxonomía, el problema de clasificación se puede categorizar en unidimensional o multidimensional en función del número de variables clase, una o más, respectivamente; o también puede ser categorizado en estacionario o cambiante con el tiempo en función de las características de los datos y de la tasa de cambio subyacente. A lo largo de esta tesis, tratamos el problema de clasificación desde tres perspectivas diferentes, a saber, clasificación supervisada multidimensional estacionaria, clasificación semisupervisada unidimensional cambiante con el tiempo, y clasificación supervisada multidimensional cambiante con el tiempo. Para llevar a cabo esta tarea, hemos usado básicamente los clasificadores Bayesianos como modelos. La primera contribución, dirigiéndose al problema de clasificación supervisada multidimensional estacionaria, se compone de dos nuevos métodos de aprendizaje de clasificadores Bayesianos multidimensionales a partir de datos estacionarios. Los métodos se proponen desde dos puntos de vista diferentes. El primer método, denominado CB-MBC, se basa en una estrategia de envoltura de selección de variables que es voraz y hacia delante, mientras que el segundo, denominado MB-MBC, es una estrategia de filtrado de variables con una aproximación basada en restricciones y en el manto de Markov. Ambos métodos han sido aplicados a dos problemas reales importantes, a saber, la predicción de los inhibidores de la transcriptasa inversa y de la proteasa para el problema de infección por el virus de la inmunodeficiencia humana tipo 1 (HIV-1), y la predicción del European Quality of Life-5 Dimensions (EQ-5D) a partir de los cuestionarios de la enfermedad de Parkinson con 39 ítems (PDQ-39). El estudio experimental incluye comparaciones de CB-MBC y MB-MBC con los métodos del estado del arte de la clasificación multidimensional, así como con métodos comúnmente utilizados para resolver el problema de predicción de la enfermedad de Parkinson, a saber, la regresión logística multinomial, mínimos cuadrados ordinarios, y mínimas desviaciones absolutas censuradas. En ambas aplicaciones, los resultados han sido prometedores con respecto a la precisión de la clasificación, así como en relación al análisis de las estructuras gráficas que identifican interacciones conocidas y novedosas entre las variables. La segunda contribución, referida al problema de clasificación semi-supervisada unidimensional cambiante con el tiempo, consiste en un método nuevo (CPL-DS) para clasificar flujos de datos parcialmente etiquetados. Los flujos de datos difieren de los conjuntos de datos estacionarios en su proceso de generación muy rápido y en su aspecto de cambio de concepto. Es decir, los conceptos aprendidos y/o la distribución subyacente están probablemente cambiando y evolucionando en el tiempo, lo que hace que el modelo de clasificación actual sea obsoleto y deba ser actualizado. CPL-DS utiliza la divergencia de Kullback-Leibler y el método de bootstrapping para cuantificar y detectar tres tipos posibles de cambio: en las predictoras, en la a posteriori de la clase o en ambas. Después, si se detecta cualquier cambio, un nuevo modelo de clasificación se aprende usando el algoritmo EM; si no, el modelo de clasificación actual se mantiene sin modificaciones. CPL-DS es general, ya que puede ser aplicado a varios modelos de clasificación. Usando dos modelos diferentes, el clasificador naive Bayes y la regresión logística, CPL-DS se ha probado con flujos de datos sintéticos y también se ha aplicado al problema real de la detección de código malware, en el cual los nuevos ficheros recibidos deben ser continuamente clasificados en malware o goodware. Los resultados experimentales muestran que nuestro método es efectivo para la detección de diferentes tipos de cambio a partir de los flujos de datos parcialmente etiquetados y también tiene una buena precisión de la clasificación. Finalmente, la tercera contribución, sobre el problema de clasificación supervisada multidimensional cambiante con el tiempo, consiste en dos métodos adaptativos, a saber, Locally Adpative-MB-MBC (LA-MB-MBC) y Globally Adpative-MB-MBC (GA-MB-MBC). Ambos métodos monitorizan el cambio de concepto a lo largo del tiempo utilizando la log-verosimilitud media como métrica y el test de Page-Hinkley. Luego, si se detecta un cambio de concepto, LA-MB-MBC adapta el actual clasificador Bayesiano multidimensional localmente alrededor de cada nodo cambiado, mientras que GA-MB-MBC aprende un nuevo clasificador Bayesiano multidimensional. El estudio experimental realizado usando flujos de datos sintéticos multidimensionales indica los méritos de los métodos adaptativos propuestos. ABSTRACT Nowadays, with the ongoing and rapid evolution of information technology and computing devices, large volumes of data are continuously collected and stored in different domains and through various real-world applications. Extracting useful knowledge from such a huge amount of data usually cannot be performed manually, and requires the use of adequate machine learning and data mining techniques. Classification is one of the most important techniques that has been successfully applied to several areas. Roughly speaking, classification consists of two main steps: first, learn a classification model or classifier from an available training data, and secondly, classify the new incoming unseen data instances using the learned classifier. Classification is supervised when the whole class values are present in the training data (i.e., fully labeled data), semi-supervised when only some class values are known (i.e., partially labeled data), and unsupervised when the whole class values are missing in the training data (i.e., unlabeled data). In addition, besides this taxonomy, the classification problem can be categorized into uni-dimensional or multi-dimensional depending on the number of class variables, one or more, respectively; or can be also categorized into stationary or streaming depending on the characteristics of the data and the rate of change underlying it. Through this thesis, we deal with the classification problem under three different settings, namely, supervised multi-dimensional stationary classification, semi-supervised unidimensional streaming classification, and supervised multi-dimensional streaming classification. To accomplish this task, we basically used Bayesian network classifiers as models. The first contribution, addressing the supervised multi-dimensional stationary classification problem, consists of two new methods for learning multi-dimensional Bayesian network classifiers from stationary data. They are proposed from two different points of view. The first method, named CB-MBC, is based on a wrapper greedy forward selection approach, while the second one, named MB-MBC, is a filter constraint-based approach based on Markov blankets. Both methods are applied to two important real-world problems, namely, the prediction of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors, and the prediction of the European Quality of Life-5 Dimensions (EQ-5D) from 39-item Parkinson’s Disease Questionnaire (PDQ-39). The experimental study includes comparisons of CB-MBC and MB-MBC against state-of-the-art multi-dimensional classification methods, as well as against commonly used methods for solving the Parkinson’s disease prediction problem, namely, multinomial logistic regression, ordinary least squares, and censored least absolute deviations. For both considered case studies, results are promising in terms of classification accuracy as well as regarding the analysis of the learned MBC graphical structures identifying known and novel interactions among variables. The second contribution, addressing the semi-supervised uni-dimensional streaming classification problem, consists of a novel method (CPL-DS) for classifying partially labeled data streams. Data streams differ from the stationary data sets by their highly rapid generation process and their concept-drifting aspect. That is, the learned concepts and/or the underlying distribution are likely changing and evolving over time, which makes the current classification model out-of-date requiring to be updated. CPL-DS uses the Kullback-Leibler divergence and bootstrapping method to quantify and detect three possible kinds of drift: feature, conditional or dual. Then, if any occurs, a new classification model is learned using the expectation-maximization algorithm; otherwise, the current classification model is kept unchanged. CPL-DS is general as it can be applied to several classification models. Using two different models, namely, naive Bayes classifier and logistic regression, CPL-DS is tested with synthetic data streams and applied to the real-world problem of malware detection, where the new received files should be continuously classified into malware or goodware. Experimental results show that our approach is effective for detecting different kinds of drift from partially labeled data streams, as well as having a good classification performance. Finally, the third contribution, addressing the supervised multi-dimensional streaming classification problem, consists of two adaptive methods, namely, Locally Adaptive-MB-MBC (LA-MB-MBC) and Globally Adaptive-MB-MBC (GA-MB-MBC). Both methods monitor the concept drift over time using the average log-likelihood score and the Page-Hinkley test. Then, if a drift is detected, LA-MB-MBC adapts the current multi-dimensional Bayesian network classifier locally around each changed node, whereas GA-MB-MBC learns a new multi-dimensional Bayesian network classifier from scratch. Experimental study carried out using synthetic multi-dimensional data streams shows the merits of both proposed adaptive methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En esta Tesis se presentan dos líneas de investigación relacionadas y que contribuyen a las áreas de Interacción Hombre-Tecnología (o Máquina; siglas en inglés: HTI o HMI), lingüística computacional y evaluación de la experiencia del usuario. Las dos líneas en cuestión son el diseño y la evaluación centrada en el usuario de sistemas de Interacción Hombre-Máquina avanzados. En la primera parte de la Tesis (Capítulos 2 a 4) se abordan cuestiones fundamentales del diseño de sistemas HMI avanzados. El Capítulo 2 presenta una panorámica del estado del arte de la investigación en el ámbito de los sistemas conversacionales multimodales, con la que se enmarca el trabajo de investigación presentado en el resto de la Tesis. Los Capítulos 3 y 4 se centran en dos grandes aspectos del diseño de sistemas HMI: un gestor del diálogo generalizado para tratar la Interacción Hombre-Máquina multimodal y sensible al contexto, y el uso de agentes animados personificados (ECAs) para mejorar la robustez del diálogo, respectivamente. El Capítulo 3, sobre gestión del diálogo, aborda el tratamiento de la heterogeneidad de la información proveniente de las modalidades comunicativas y de los sensores externos. En este capítulo se propone, en un nivel de abstracción alto, una arquitectura para la gestión del diálogo con influjos heterogéneos de información, apoyándose en el uso de State Chart XML. En el Capítulo 4 se presenta una contribución a la representación interna de intenciones comunicativas, y su traducción a secuencias de gestos a ejecutar por parte de un ECA, diseñados específicamente para mejorar la robustez en situaciones de diálogo críticas que pueden surgir, por ejemplo, cuando se producen errores de entendimiento en la comunicación entre el usuario humano y la máquina. Se propone, en estas páginas, una extensión del Functional Mark-up Language definido en el marco conceptual SAIBA. Esta extensión permite representar actos comunicativos que realizan intenciones del emisor (la máquina) que no se pretende sean captadas conscientemente por el receptor (el usuario humano), pero con las que se pretende influirle a éste e influir el curso del diálogo. Esto se consigue mediante un objeto llamado Base de Intenciones Comunicativas (en inglés, Communication Intention Base, o CIB). La representación en el CIB de intenciones “no claradas” además de las explícitas permite la construcción de actos comunicativos que realizan simultáneamente varias intenciones comunicativas. En el Capítulo 4 también se describe un sistema experimental para el control remoto (simulado) de un asistente domótico, con autenticación de locutor para dar acceso, y con un ECA en el interfaz de cada una de estas tareas. Se incluye una descripción de las secuencias de comportamiento verbal y no verbal de los ECAs, que fueron diseñados específicamente para determinadas situaciones con objeto de mejorar la robustez del diálogo. Los Capítulos 5 a 7 conforman la parte de la Tesis dedicada a la evaluación. El Capítulo 5 repasa antecedentes relevantes en la literatura de tecnologías de la información en general, y de sistemas de interacción hablada en particular. Los principales antecedentes en el ámbito de la evaluación de la interacción sobre los cuales se ha desarrollado el trabajo presentado en esta Tesis son el Technology Acceptance Model (TAM), la herramienta Subjective Assessment of Speech System Interfaces (SASSI), y la Recomendación P.851 de la ITU-T. En el Capítulo 6 se describen un marco y una metodología de evaluación aplicados a la experiencia del usuario con sistemas HMI multimodales. Se desarrolló con este propósito un novedoso marco de evaluación subjetiva de la calidad de la experiencia del usuario y su relación con la aceptación por parte del mismo de la tecnología HMI (el nombre dado en inglés a este marco es Subjective Quality Evaluation Framework). En este marco se articula una estructura de clases de factores subjetivos relacionados con la satisfacción y aceptación por parte del usuario de la tecnología HMI propuesta. Esta estructura, tal y como se propone en la presente tesis, tiene dos dimensiones ortogonales. Primero se identifican tres grandes clases de parámetros relacionados con la aceptación por parte del usuario: “agradabilidad ” (likeability: aquellos que tienen que ver con la experiencia de uso, sin entrar en valoraciones de utilidad), rechazo (los cuales sólo pueden tener una valencia negativa) y percepción de utilidad. En segundo lugar, este conjunto clases se reproduce para distintos “niveles, o focos, percepción del usuario”. Éstos incluyen, como mínimo, un nivel de valoración global del sistema, niveles correspondientes a las tareas a realizar y objetivos a alcanzar, y un nivel de interfaz (en los casos propuestos en esta tesis, el interfaz es un sistema de diálogo con o sin un ECA). En el Capítulo 7 se presenta una evaluación empírica del sistema descrito en el Capítulo 4. El estudio se apoya en los mencionados antecedentes en la literatura, ampliados con parámetros para el estudio específico de los agentes animados (los ECAs), la auto-evaluación de las emociones de los usuarios, así como determinados factores de rechazo (concretamente, la preocupación por la privacidad y la seguridad). También se evalúa el marco de evaluación subjetiva de la calidad propuesto en el capítulo anterior. Los análisis de factores efectuados revelan una estructura de parámetros muy cercana conceptualmente a la división de clases en utilidad-agradabilidad-rechazo propuesta en dicho marco, resultado que da cierta validez empírica al marco. Análisis basados en regresiones lineales revelan estructuras de dependencias e interrelación entre los parámetros subjetivos y objetivos considerados. El efecto central de mediación, descrito en el Technology Acceptance Model, de la utilidad percibida sobre la relación de dependencia entre la intención de uso y la facilidad de uso percibida, se confirma en el estudio presentado en la presente Tesis. Además, se ha encontrado que esta estructura de relaciones se fortalece, en el estudio concreto presentado en estas páginas, si las variables consideradas se generalizan para cubrir más ampliamente las categorías de agradabilidad y utilidad contempladas en el marco de evaluación subjetiva de calidad. Se ha observado, asimismo, que los factores de rechazo aparecen como un componente propio en los análisis de factores, y además se distinguen por su comportamiento: moderan la relación entre la intención de uso (que es el principal indicador de la aceptación del usuario) y su predictor más fuerte, la utilidad percibida. Se presentan también resultados de menor importancia referentes a los efectos de los ECAs sobre los interfaces de los sistemas de diálogo y sobre los parámetros de percepción y las valoraciones de los usuarios que juegan un papel en conformar su aceptación de la tecnología. A pesar de que se observa un rendimiento de la interacción dialogada ligeramente mejor con ECAs, las opiniones subjetivas son muy similares entre los dos grupos experimentales (uno interactuando con un sistema de diálogo con ECA, y el otro sin ECA). Entre las pequeñas diferencias encontradas entre los dos grupos destacan las siguientes: en el grupo experimental sin ECA (es decir, con interfaz sólo de voz) se observó un efecto más directo de los problemas de diálogo (por ejemplo, errores de reconocimiento) sobre la percepción de robustez, mientras que el grupo con ECA tuvo una respuesta emocional más positiva cuando se producían problemas. Los ECAs parecen generar inicialmente expectativas más elevadas en cuanto a las capacidades del sistema, y los usuarios de este grupo se declaran más seguros de sí mismos en su interacción. Por último, se observan algunos indicios de efectos sociales de los ECAs: la “amigabilidad ” percibida los ECAs estaba correlada con un incremento la preocupación por la seguridad. Asimismo, los usuarios del sistema con ECAs tendían más a culparse a sí mismos, en lugar de culpar al sistema, de los problemas de diálogo que pudieran surgir, mientras que se observó una ligera tendencia opuesta en el caso de los usuarios del sistema con interacción sólo de voz. ABSTRACT This Thesis presents two related lines of research work contributing to the general fields of Human-Technology (or Machine) Interaction (HTI, or HMI), computational linguistics, and user experience evaluation. These two lines are the design and user-focused evaluation of advanced Human-Machine (or Technology) Interaction systems. The first part of the Thesis (Chapters 2 to 4) is centred on advanced HMI system design. Chapter 2 provides a background overview of the state of research in multimodal conversational systems. This sets the stage for the research work presented in the rest of the Thesis. Chapers 3 and 4 focus on two major aspects of HMI design in detail: a generalised dialogue manager for context-aware multimodal HMI, and embodied conversational agents (ECAs, or animated agents) to improve dialogue robustness, respectively. Chapter 3, on dialogue management, deals with how to handle information heterogeneity, both from the communication modalities or from external sensors. A highly abstracted architectural contribution based on State Chart XML is proposed. Chapter 4 presents a contribution for the internal representation of communication intentions and their translation into gestural sequences for an ECA, especially designed to improve robustness in critical dialogue situations such as when miscommunication occurs. We propose an extension of the functionality of Functional Mark-up Language, as envisaged in much of the work in the SAIBA framework. Our extension allows the representation of communication acts that carry intentions that are not for the interlocutor to know of, but which are made to influence him or her as well as the flow of the dialogue itself. This is achieved through a design element we have called the Communication Intention Base. Such r pr s ntation of “non- clar ” int ntions allows th construction of communication acts that carry several communication intentions simultaneously. Also in Chapter 4, an experimental system is described which allows (simulated) remote control to a home automation assistant, with biometric (speaker) authentication to grant access, featuring embodied conversation agents for each of the tasks. The discussion includes a description of the behavioural sequences for the ECAs, which were designed for specific dialogue situations with particular attention given to the objective of improving dialogue robustness. Chapters 5 to 7 form the evaluation part of the Thesis. Chapter 5 reviews evaluation approaches in the literature for information technologies, as well as in particular for speech-based interaction systems, that are useful precedents to the contributions of the present Thesis. The main evaluation precedents on which the work in this Thesis has built are the Technology Acceptance Model (TAM), the Subjective Assessment of Speech System Interfaces (SASSI) tool, and ITU-T Recommendation P.851. Chapter 6 presents the author’s work in establishing an valuation framework and methodology applied to the users’ experience with multimodal HMI systems. A novel user-acceptance Subjective Quality Evaluation Framework was developed by the author specifically for this purpose. A class structure arises from two orthogonal sets of dimensions. First we identify three broad classes of parameters related with user acceptance: likeability factors (those that have to do with the experience of using the system), rejection factors (which can only have a negative valence) and perception of usefulness. Secondly, the class structure is further broken down into several “user perception levels”; at the very least: an overall system-assessment level, task and goal-related levels, and an interface level (e.g., a dialogue system with or without an ECA). An empirical evaluation of the system described in Chapter 4 is presented in Chapter 7. The study was based on the abovementioned precedents in the literature, expanded with categories covering the inclusion of an ECA, the users’ s lf-assessed emotions, and particular rejection factors (privacy and security concerns). The Subjective Quality Evaluation Framework proposed in the previous chapter was also scrutinised. Factor analyses revealed an item structure very much related conceptually to the usefulness-likeability-rejection class division introduced above, thus giving it some empirical weight. Regression-based analysis revealed structures of dependencies, paths of interrelations, between the subjective and objective parameters considered. The central mediation effect, in the Technology Acceptance Model, of perceived usefulness on the dependency relationship of intention-to-use with perceived ease of use was confirmed in this study. Furthermore, the pattern of relationships was stronger for variables covering more broadly the likeability and usefulness categories in the Subjective Quality Evaluation Framework. Rejection factors were found to have a distinct presence as components in factor analyses, as well as distinct behaviour: they were found to moderate the relationship between intention-to-use (the main measure of user acceptance) and its strongest predictor, perceived usefulness. Insights of secondary importance are also given regarding the effect of ECAs on the interface of spoken dialogue systems and the dimensions of user perception and judgement attitude that may have a role in determining user acceptance of the technology. Despite observing slightly better performance values in the case of the system with the ECA, subjective opinions regarding both systems were, overall, very similar. Minor differences between two experimental groups (one interacting with an ECA, the other only through speech) include a more direct effect of dialogue problems (e.g., non-understandings) on perceived dialogue robustness for the voice-only interface test group, and a more positive emotional response for the ECA test group. Our findings further suggest that the ECA generates higher initial expectations, and users seem slightly more confident in their interaction with the ECA than do those without it. Finally, mild evidence of social effects of ECAs was also found: the perceived friendliness of the ECA increased security concerns, and ECA users may tend to blame themselves rather than the system when dialogue problems are encountered, while the opposite may be true for voice-only users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we show how number theoretical problems can be fruitfully approached with the tools of statistical physics. We focus on g-Sidon sets, which describe sequences of integers whose pairwise sums are different, and propose a random decision problem which addresses the probability of a random set of k integers to be g-Sidon. First, we provide numerical evidence showing that there is a crossover between satisfiable and unsatisfiable phases which converts to an abrupt phase transition in a properly defined thermodynamic limit. Initially assuming independence, we then develop a mean-field theory for the g-Sidon decision problem. We further improve the mean-field theory, which is only qualitatively correct, by incorporating deviations from independence, yielding results in good quantitative agreement with the numerics for both finite systems and in the thermodynamic limit. Connections between the generalized birthday problem in probability theory, the number theory of Sidon sets and the properties of q-Potts models in condensed matter physics are briefly discussed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En el catálogo colectivo de la BNF tienen 1 vol. en tres partes con todos los sermones, éste coincidiría con la tercera

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show the existence of sets with n points (n ? 4) for which every convex decomposition contains more than (35/32)n?(3/2) polygons,which refutes the conjecture that for every set of n points there is a convex decomposition with at most n+C polygons. For sets having exactly three extreme pointswe show that more than n+sqr(2(n ? 3))?4 polygons may be necessary to form a convex decomposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine, with recently developed Lagrangian tools, altimeter data and numerical simulations obtained from the HYCOM model in the Gulf of Mexico. Our data correspond to the months just after the Deepwater Horizon oil spill in the year 2010. Our Lagrangian analysis provides a skeleton that allows the interpretation of transport routes over the ocean surface. The transport routes are further verified by the simultaneous study of the evolution of several drifters launched during those months in the Gulf of Mexico. We find that there exist Lagrangian structures that justify the dynamics of the drifters, although the agreement depends on the quality of the data. We discuss the impact of the Lagrangian tools on the assessment of the predictive capacity of these data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Important physical and biological processes in soil-plant-microbial systems are dominated by the geometry of soil pore space, and a correct model of this geometry is critical for understanding them. We analyze the geometry of soil pore space with the X-ray computed tomography (CT) of intact soil columns. We present here some preliminary results of our investigation on Minkowski functionals of parallel sets to characterize soil structure. We also show how the evolution of Minkowski morphological measurements of parallel sets may help to characterize the influence of conventional tillage and permanent cover crop of resident vegetation on soil structure in a Spanish Mediterranean vineyard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we axiomatically introduce fuzzy multi-measures on bounded lattices. In particular, we make a distinction between four different types of fuzzy set multi-measures on a universe X, considering both the usual or inverse real number ordering of this lattice and increasing or decreasing monotonicity with respect to the number of arguments. We provide results from which we can derive families of measures that hold for the applicable conditions in each case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last few decades, new imaging techniques like X-ray computed tomography have made available rich and detailed information of the spatial arrangement of soil constituents, usually referred to as soil structure. Mathematical morphology provides a plethora of mathematical techniques to analyze and parameterize the geometry of soil structure. They provide a guide to design the process from image analysis to the generation of synthetic models of soil structure in order to investigate key features of flow and transport phenomena in soil. In this work, we explore the ability of morphological functions built over Minkowski functionals with parallel sets of the pore space to characterize and quantify pore space geometry of columns of intact soil. These morphological functions seem to discriminate the effects on soil pore space geometry of contrasting management practices in a Mediterranean vineyard, and they provide the first step toward identifying the statistical significance of the observed differences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Port. con esc. xil. episcopal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Funding The International Primary Care Respiratory Group (IPCRG) provided funding for this research project as an UNLOCK group study for which the funding was obtained through an unrestricted grant by Novartis AG, Basel, Switzerland. The latter funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Database access for the OPCRD was provided by the Respiratory Effectiveness Group (REG) and Research in Real Life; the OPCRD statistical analysis was funded by REG. The Bocholtz Study was funded by PICASSO for COPD, an initiative of Boehringer Ingelheim, Pfizer and the Caphri Research Institute, Maastricht University, The Netherlands.