947 resultados para Irrigation water source


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Continent catheterizable ileal pouches require regular irrigations to reduce the risk of bacteriuria and urinary tract infections (UTIs).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ensuring water is safe at source and point-of-use is important in areas of the world where drinking water is collected from communal supplies. This report describes a study in rural Mali to determine the appropriateness of assumptions common among development organizations that drinking water will remain safe at point-of-use if collected from a safe (improved) source. Water was collected from ten sources (borehole wells with hand pumps, and hand-dug wells) and forty-five households using water from each source type. Water quality was evaluated seasonally (quarterly) for levels of total coliform, E.coli, and turbidity. Microbial testing was done using the 3M Petrifilm™ method. Turbidity testing was done using a turbidity tube. Microbial testing results were analyzed using statistical tests including Kruskal-Wallis, Mann Whitney, and analysis of variance. Results show that water from hand pumps did not contain total coliform or E.coli and had turbidity under 5 NTUs, whereas water from dug wells had high levels of bacteria and turbidity. However water at point-of-use (household) from hand pumps showed microbial contamination - at times being indistinguishable from households using dug wells - indicating a decline in water quality from source to point-of-use. Chemical treatment at point-of-use is suggested as an appropriate solution to eliminating any post-source contamination. Additionally, it is recommended that future work be done to modify existing water development strategies to consider water quality at point-of-use.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

En la conferencia se expone la situación en España de los riegos a presión considerando los condicionantes de escasez de agua y el precio de la energía.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

El potencial hídrico del tronco es una herramiento útil para el manejo del riego. Los umbrales de riego deben establecerse para cada periodo fisiológico. En este experimento, realizado en Arbequina en seto, se estudio la relacion entre los potenciales hídricos y la produccion de aceite. Cuando los potenciales hidricos son inferiores a -1.3 MPa el crecimiento vegetativo se reduce mas del 50%. En cuanto a la produccion, se observó que regando en Julio cuando se alcanzan potenciales cercanos a -2.9 MPa se puede ahorrar agua sin afectar a la produccion. Sin embargo en Agosto el potencial debe mantenerse por encima de -2 MPa para que no se resienta la producción.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Environmental problems related to the use of synthetic fertilizers and to organic waste management have led to increased interest in the use of organic materials as an alternative source of nutrients for crops, but this is also associated with N2O emissions. There has been an increasing amount of research into the effects of using different types of fertilization on N2O emissions under Mediterranean climatic conditions, but the findings have sometimes been rather contradictory. Available information also suggests that water management could exert a high influence on N2O emissions. In this context, we have reviewed the current scientific knowledge, including an analysis of the effect of fertilizer type and water management on direct N2O emissions. A meta-analysis of compliant reviewed experiments revealed significantly lower N2O emissions for organic as opposed to synthetic fertilizers (23% reduction). When organic materials were segregated in solid and liquid, only solid organic fertilizer emissions were significantly lower than those of synthetic fertilizers (28% reduction in cumulative emissions). The EF is similar to the IPCC factor in conventionally irrigated systems (0.98% N2O-N N applied−1), but one order of magnitude lower in rainfed systems (0.08%). Drip irrigation produces intermediate emission levels (0.66%). Differences are driven by Mediterranean agro-climatic characteristics, which include low soil organic matter (SOM) content and a distinctive rainfall and temperature pattern. Interactions between environmental and management factors and the microbial processes involved in N2O emissions are discussed in detail. Indirect emissions have not been fully accounted for, but when organic fertilizers are applied at similar N rates to synthetic fertilizers, they generally make smaller contributions to the leached NO3− pool. The most promising practices for reducing N2O through organic fertilization include: (i) minimizing water applications; (ii) minimizing bare soil; (iii) improving waste management; and (iv) tightening N cycling through N immobilization. The mitigation potential may be limited by: (i) residual effect; (ii) the long-term effects of fertilizers on SOM; (iii) lower yield-scaled performance; and (iv) total N availability from organic sources. Knowledge gaps identified in the review included: (i) insufficient sampling periods; (ii) high background emissions; (iii) the need to provide N2O EF and yield-scaled EF; (iv) the need for more research on specific cropping systems; and (v) the need for full GHG balances. In conclusion, the available information suggests a potential of organic fertilizers and water-saving practices to mitigate N2O emissions under Mediterranean climatic conditions, although further research is needed before it can be regarded as fully proven, understood and developed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work studies the most beneficial way of allocating water in an irrigation community in water shortage situations. Therefore, it proposes that the irrigation surface area be divided into homogeneous zones, each with a beneficial relationship with respect to the water applied. The mathematical formula that enables one to obtain the optimal quota for the users or irrigation community as a whole has been found for individual relations of a quadratic or power type, and these have yielded different and complementary characteristics. Dimensionless variables have been used to display the results, and to compare with other alternative allocation rules such as the proportional rule, referencing the situation without water restrictions. As a result, for each water shortage situation, the water that is allocated to each user is obtained, together with the losses in individual income and the losses for the community as a whole. Furthermore, a proposal is put forth for establishing the marginal benefit from the water available, which could be of interest in enabling each community to analyze whether it is in its best interest to invest in increasing the resource, or to sell the resource to other users. Finally, an example is given to demonstrate how the method works and to show that, when the differences between the production schemes are considered, the differences in benefit reduction between the proportional allocation and the optimal allocation are also sizeable. Read More: http://ascelibrary.org/doi/abs/10.1061/(ASCE)IR.1943-4774.0000667

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Existe una creciente necesidad de hacer el mejor uso del agua para regadío. Una alternativa eficiente consiste en la monitorización del contenido volumétrico de agua (θ), utilizando sensores de humedad. A pesar de existir una gran diversidad de sensores y tecnologías disponibles, actualmente ninguna de ellas permite obtener medidas distribuidas en perfiles verticales de un metro y en escalas laterales de 0.1-1,000 m. En este sentido, es necesario buscar tecnologías alternativas que sirvan de puente entre las medidas puntuales y las escalas intermedias. Esta tesis doctoral se basa en el uso de Fibra Óptica (FO) con sistema de medida de temperatura distribuida (DTS), una tecnología alternativa de reciente creación que ha levantado gran expectación en las últimas dos décadas. Específicamente utilizamos el método de fibra calentada, en inglés Actively Heated Fiber Optic (AHFO), en la cual los cables de Fibra Óptica se utilizan como sondas de calor mediante la aplicación de corriente eléctrica a través de la camisa de acero inoxidable, o de un conductor eléctrico simétricamente posicionado, envuelto, alrededor del haz de fibra óptica. El uso de fibra calentada se basa en la utilización de la teoría de los pulsos de calor, en inglés Heated Pulsed Theory (HPP), por la cual el conductor se aproxima a una fuente de calor lineal e infinitesimal que introduce calor en el suelo. Mediante el análisis del tiempo de ocurrencia y magnitud de la respuesta térmica ante un pulso de calor, es posible estimar algunas propiedades específicas del suelo, tales como el contenido de humedad, calor específico (C) y conductividad térmica. Estos parámetros pueden ser estimados utilizando un sensor de temperatura adyacente a la sonda de calor [método simple, en inglés single heated pulsed probes (SHPP)], ó a una distancia radial r [método doble, en inglés dual heated pulsed probes (DHPP)]. Esta tesis doctoral pretende probar la idoneidad de los sistemas de fibra óptica calentada para la aplicación de la teoría clásica de sondas calentadas. Para ello, se desarrollarán dos sistemas FO-DTS. El primero se sitúa en un campo agrícola de La Nava de Arévalo (Ávila, España), en el cual se aplica la teoría SHPP para estimar θ. El segundo sistema se desarrolla en laboratorio y emplea la teoría DHPP para medir tanto θ como C. La teoría SHPP puede ser implementada con fibra óptica calentada para obtener medidas distribuidas de θ, mediante la utilización de sistemas FO-DTS y el uso de curvas de calibración específicas para cada suelo. Sin embargo, la mayoría de aplicaciones AHFO se han desarrollado exclusivamente en laboratorio utilizando medios porosos homogéneos. En esta tesis se utiliza el programa Hydrus 2D/3D para definir tales curvas de calibración. El modelo propuesto es validado en un segmento de cable enterrado en una instalación de fibra óptica y es capaz de predecir la respuesta térmica del suelo en puntos concretos de la instalación una vez que las propiedades físicas y térmicas de éste son definidas. La exactitud de la metodología para predecir θ frente a medidas puntuales tomadas con sensores de humedad comerciales fue de 0.001 a 0.022 m3 m-3 La implementación de la teoría DHPP con AHFO para medir C y θ suponen una oportunidad sin precedentes para aplicaciones medioambientales. En esta tesis se emplean diferentes combinaciones de cables y fuentes emisoras de calor, que se colocan en paralelo y utilizan un rango variado de espaciamientos, todo ello en el laboratorio. La amplitud de la señal y el tiempo de llegada se han observado como funciones del calor específico del suelo. Medidas de C, utilizando esta metodología y ante un rango variado de contenidos de humedad, sugirieron la idoneidad del método, aunque también se observaron importantes errores en contenidos bajos de humedad de hasta un 22%. La mejora del método requerirá otros modelos más precisos que tengan en cuenta el diámetro del cable, así como la posible influencia térmica del mismo. ABSTRACT There is an increasing need to make the most efficient use of water for irrigation. A good approach to make irrigation as efficient as possible is to monitor soil water content (θ) using soil moisture sensors. Although, there is a broad range of different sensors and technologies, currently, none of them can practically and accurately provide vertical and lateral moisture profiles spanning 0-1 m depth and 0.1-1,000 m lateral scales. In this regard, further research to fulfill the intermediate scale and to bridge single-point measurement with the broaden scales is still needed. This dissertation is based on the use of Fiber Optics with Distributed Temperature Sensing (FO-DTS), a novel approach which has been receiving growing interest in the last two decades. Specifically, we employ the so called Actively Heated Fiber Optic (AHFO) method, in which FO cables are employed as heat probe conductors by applying electricity to the stainless steel armoring jacket or an added conductor symmetrically positioned (wrapped) about the FO cable. AHFO is based on the classic Heated Pulsed Theory (HPP) which usually employs a heat probe conductor that approximates to an infinite line heat source which injects heat into the soil. Observation of the timing and magnitude of the thermal response to the energy input provide enough information to derive certain specific soil thermal characteristics such as the soil heat capacity, soil thermal conductivity or soil water content. These parameters can be estimated by capturing the soil thermal response (using a thermal sensor) adjacent to the heat source (the heating and the thermal sources are mounted together in the so called single heated pulsed probe (SHPP)), or separated at a certain distance, r (dual heated pulsed method (DHPP) This dissertation aims to test the feasibility of heated fiber optics to implement the HPP theory. Specifically, we focus on measuring soil water content (θ) and soil heat capacity (C) by employing two types of FO-DTS systems. The first one is located in an agricultural field in La Nava de Arévalo (Ávila, Spain) and employ the SHPP theory to estimate θ. The second one is developed in the laboratory using the procedures described in the DHPP theory, and focuses on estimating both C and θ. The SHPP theory can be implemented with actively heated fiber optics (AHFO) to obtain distributed measurements of soil water content (θ) by using reported soil thermal responses in Distributed Temperature Sensing (DTS) and with a soil-specific calibration relationship. However, most reported AHFO applications have been calibrated under laboratory homogeneous soil conditions, while inexpensive efficient calibration procedures useful in heterogeneous soils are lacking. In this PhD thesis, we employ the Hydrus 2D/3D code to define these soil-specific calibration curves. The model is then validated at a selected FO transect of the DTS installation. The model was able to predict the soil thermal response at specific locations of the fiber optic cable once the surrounding soil hydraulic and thermal properties were known. Results using electromagnetic moisture sensors at the same specific locations demonstrate the feasibility of the model to detect θ within an accuracy of 0.001 to 0.022 m3 m-3. Implementation of the Dual Heated Pulsed Probe (DPHP) theory for measurement of volumetric heat capacity (C) and water content (θ) with Distributed Temperature Sensing (DTS) heated fiber optic (FO) systems presents an unprecedented opportunity for environmental monitoring. We test the method using different combinations of FO cables and heat sources at a range of spacings in a laboratory setting. The amplitude and phase-shift in the heat signal with distance was found to be a function of the soil volumetric heat capacity (referred, here, to as Cs). Estimations of Cs at a range of θ suggest feasibility via responsiveness to the changes in θ (we observed a linear relationship in all FO combinations), though observed bias with decreasing soil water contents (up to 22%) was also reported. Optimization will require further models to account for the finite radius and thermal influence of the FO cables, employed here as “needle probes”. Also, consideration of the range of soil conditions and cable spacing and jacket configurations, suggested here to be valuable subjects of further study and development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The conference program will cover all areas of environmental and resource economics, ranging from topics prevailing in the general debate, such as climate change, energy sources, water management and ecosystem services evaluation, to more specialized subjects such as biodiversity conservation or persistent organic pollutants. The congress will be held on the Faculty of Economics of the University of Girona, located in Montilivi, a city quarter situated just few minutes from the city center, conveniently connected by bus lines L8 and L11.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface water and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox) may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly considers three regional contexts with broadly similar climatic and water-resource conditions – central Chile, southwestern US, and south-central Spain – where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Water supply instability is one of the main risks faced by irrigation districts and farmers. Water procurement decision optimisation is essential in order to increase supply reliability and reduce costs. Water markets, such as spot purchases or water supply option contracts, can make this decision process more flexible. We analyse the potential interest in an option contract for an irrigation district that has access to several water sources. We apply a stochastic recursive mathematical programming model to simulate the water procurement decisions of an irrigation district?s board operating in a context of water supply uncertainty in south-eastern Spain. We analyse what role different option contracts could play in securing its water supply. Results suggest that the irrigation district would be willing to accept the proposed option contract in most cases subject to realistic values of the option contract financial terms. Of nine different water sources, desalination and the option contract are the main substitutes, where the use of either depends on the contract parameters. The contract premium and optioned volume are the variables that have a greater impact on the irrigation district?s decisions. Key words: Segura Basin, stochastic recursive programming, water markets, water supply option contract, water supply risk.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The proline (Pro) concentration increases greatly in the growing region of maize (Zea mays L.) primary roots at low water potentials (ψw), largely as a result of an increased net rate of Pro deposition. Labeled glutamate (Glu), ornithine (Orn), or Pro was supplied specifically to the root tip of intact seedlings in solution culture at high and low ψw to assess the relative importance of Pro synthesis, catabolism, utilization, and transport in root-tip Pro deposition. Labeling with [3H]Glu indicated that Pro synthesis from Glu did not increase substantially at low ψw and accounted for only a small fraction of the Pro deposition. Labeling with [14C]Orn showed that Pro synthesis from Orn also could not be a substantial contributor to Pro deposition. Labeling with [3H]Pro indicated that neither Pro catabolism nor utilization in the root tip was decreased at low ψw. Pro catabolism occurred at least as rapidly as Pro synthesis from Glu. There was, however, an increase in Pro uptake at low ψw, which suggests increased Pro transport. Taken together, the data indicate that increased transport of Pro to the root tip serves as the source of low-ψw-induced Pro accumulation. The possible significance of Pro catabolism in sustaining root growth at low ψw is also discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Trihalomethanes are organic compounds formed in drinking water distribution systems as a result of disinfection. This capstone project researched and evaluated the statistical correlation of trihalomethanes in finished drinking water and total organic carbon in source water using data generated by Denver area utilities. Results of the study conclude that some drinking water supply systems show a slight correlation between source water total organic carbon levels and trihalomethane levels in finished water. Results of the study also verify the assertion that changes to treatment for the reduction of trihalomethanes, for the protection of human health under the Safe Drinking Water Act should be determined by each utility, using information from gathered data, seasonal trends, and small scale batch testing.